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“The Smalltalk-80m system makes it possible to write programs quickly by providing
object-oriented programming, incremental compilation, run-time type checking, use-extensible data
types and control structures, and an interactive graphical interface. However, the potential savings
in programming effort have been curtailed by poor performance in widely available computers or
high processor cost. Smalltalk-80 systems pose tough challenges for implementors: dynamic data
typing, a high-level instruction set, frequent and expensive procedure calls, and object-oriented
storage management.

l\ 55 TM Abstract

The dissertation documents two results that run counter to conventional wisdom: that a
reduced instruction set computer can offer excellent performance for a system with dynamic data
typing such as Smalltalk-80, and that automatic storage reclamation need not be time-consuming. &
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Abstract PUN

The Smalltalk-80™ gystem makes it possible to write programs quickly by providing beso
object-oriented programming, incrememtal compilation, run-time type checking,
user-extensible data types and control structures, and an interactive graphical interface.
However, the potential savings in programming effort have been curtailed by poor perfor-
mance in widely available computers or high processor cost. Smalltalk-80 systems pose -':‘-::'-E
tough challenges for implementors: dynamic data typing, a high-level instruction set. fre- AL
quent and expensive procedure calls, and object-oriented storage management.

To solve these problems, a group of researchers at U. C. Berkeley has designed and
built the SOAR (Smalltalk On A RISC) microprocessor. In order to determine the perfor- ¥ate 3
mance of Smalltalk-80 on SOAR and to evaluate the importance of each of the ideas, simu- Al ‘

lations of five representative benchmarks have been analyzed. The results suggest that: SN

*  Six ideas substantially improve performance: compilation to a low-level instruction
set, multiple windows of on-chip registers, c;dﬁng the target of a call instruction i.n the NG
instruction itself, byte insert and extract instructions, instructions for arithmetic and
comparison operations on tagged integers, and our storage management algorithm, e

» . ~ \
Generation Scavenging. RN
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i *  Seven features contribute linle to performance: shadow registers to simplify trap
B recovery, hardware assistance for garbage collection, vectored traps, addressable regis-

;;E' . ters, clearing multiple registers in parallel, conditional trap instructions, and load- and
¥ o0
":E} . store-multiple instructions.

i *  The language-specific hardware in SOAR doubles its performance over a RISC II with .

' "

ho the same cycle time. B
o W
RN o Generation Scavenging, a storage reclamation algorithm developed by the author, con- Pt
R

v' sumes only 3% of the CPU time, in contrast to the 9% of comparable Smalltalk-80 sys- fj,’ '

i i

N e
: 40 tems. ':‘.:'?
:: 3 '{.;f
1Y »  Despite a five-to-one handicap in basic cycle time, the NMOS SOAR microprocessor <

5 should run as fast an ECL Dorado minicomputer. v

Y .

3 i
:;Z The dissertation reports two results that run counter to conventional wisdom: that a :'5?
B X ]
pad reduced instruction set computer can offer excellent performance for a system with dynamic ﬁt

. \ .I‘\‘ )
v data typing such as Smalltalk-80, and that automatic storage reclamation need not be =]
' o :‘:’& .

‘} time-consuming. O3
» e
R

=

o P
5 R

o .

3 KO
A ‘,1‘.".?.
157 ::;:..

x| R
P R
b \J ‘1‘ !
¥ ~ ,T.E:Z
(n.": ‘.\.!"\‘ :
o 5
e e
R 5

‘ e

N %
~ e
3 ' ‘- “\

: + \\‘\
v ..I




R S WS 2 R0 hav il “Fol ) PV Rodli “Pad AR TNV v - - - v . - . - - - - N VNN R v Y - AR 1 iy - .
| V.l

: 2
b , 2
: LM
L Ky ,

Table of Contents ,:‘f:;‘
i WA
950
R
Table of Contents i P
‘ Table of Figures v o
LY
Tabie of Tables vi E:E: ’
e

';é Chapter 1: Introduction 1 £rn

! Chapter 2: Previous Work 6 AR
; Section2.1:  Introduction 6 oo

1. Section 2.1.1:  Object-Oriented Programming 7 e

2 Section 2.1.2:  Shorening the Edit-Compile-Test-Debug Cycle ...covrrvrrrre 8 a2y

' Section 2.1.3:  Graphics 10 P

E Section 2.1.4:  Rapid Response 10 .:i'

- Section 2.1.5:  The Bad News 10 e

:‘_ Section 2.2: The Smallalk-80 Exploratory Programming Environment .......... 11 :'\‘;',:a

S Section 2.3: Reducing the Cost of EPEs with Software Only ...........ccoconveuesenne 12 e
- Section 24:  Hardware for Exploratory Programming EQvironments ............. 14 &f- 2

% Section 24.1:  The RICE Computer 14 R

:1; ) Section 24.2:  The Burroughs B5700 and B6700 Computers 15 f.:i"v

3 Section 2.4.3:  Scheme-79 16 ,:::

: Section 2.4.4:  The Symbolics 3600 Lisp Machine 19 RO
Section 24.5:  Katana-32 21 ’

Section 2.5: Reduced Instruction Set Computer (RISC) Architecture .............. 24 s %

= Section 2.5.1:  IBM-801 25 4

% Section 2.5.2: RISCland II 25 NG

N Section253:  MIPS 28 S

- Section 2.6: Summary . 29 ot

o & "\::

;ﬁ: Chapter 3: The SOAR Architecture .... 30 ; :'

o Section3.1: Introduction 30 NN

s Section 3.2: TYPE CRECKING «.....cocovsrmemssmrmasorsrssssssssssssmsmsssanmsmssssassssssssssssses 30 gl

] Section 3.2.1:  Tags Trap Bad Guesses ....... 31 .
X Section 3.2.2:  Conditional SKip IDSTUCHONS. wo.vvsvvrccrrserssnssessns 31 R
< Section 3.2.3:  Two-Tone Instructions ........ ceesneseresesaasseeans 33 ‘\-:;,_f
> Section 32.4:  Tagged Immediate OPEraNdS ..........cerevversnrerecssasssnesesns 33 -‘;::;‘;f

~ Section 3.3: INIETPIEIALION .......cvvuunrreereencensessseseasssssesesssesmosssssinssssesssssassssasessisess 34 N
-y Section 3.3.1:  Reduced INSTUCTION SEL .....cccvrereerenntricssietnistnes st ssnssnsessasensines 35 N

ne SN

2 o

o R

B .

3 o

R e o A A A e T L L S o e o T e S A g e L D X e T e T i S Ll ) ."3‘3



vy sy o e L > b b - = \f-.
'
Section 3.3.2:  SOAR Interrupts and Traps 39 b
Section 3.4: Fast Calls 42 b’
i Section 3.4.1:  Muldple Overlapping On-Chip Register Windows .......c..ccvsenesees 43 ]
3 Section 3.4.2:  Caching Call Targets In Line as "
':a Section 3.4.3:  Fast Shuffle: One Cycle Calls and Jumps 47 'Z'f'l.'
2 ‘Section 3.4.4:  The Rewm Instruction: Parallel Register Initialization ........c....... 48 2
N Section 3.5: Object-Orieated Storage Management $0 YA
i Section 3.5.1:  Automatic Storage Reclamation S0 r )
2 Section 3.5.2:  Activation Records as Objects 53 434
o Section 3.5.3:  Virtual Memory =z
:'.j Section 3.6: Implementation 54 i
- Section 3.6.1:  Special Registers W
! Section 3.6.2:  The SOAR Daupath 56 R
v Section 3.6.3:  Pipelining in SOAR 56 S
R Section 3.6.4:  Implementation Statistics s8 R
E:' Section 3.7: Summary 59 :}E
= Chapter 4: Performance Evaluation of the SOAR Architecture ..............cccooeuceuene 6! C-j"f
2. Section 4.1: Introduction 6] e
52 Section 4.2: Overall Performance: SOAR vs Dorado 65 '_:;Z:q._
“ Section 4.3: Relative Performance of SOAR 66 R
i Section44: = Evaluating Individual Features 67 el
- Section 4.5: Conclusions 72 A
) s
:f-‘ Chapter 5: Non-Disruptive High Performance Storage Reclamation .................. : 74 :‘jl::
Y Section5.1:  Ingoduction 74 o
i Section 5.2: The Relationship Between Virtual Memory and Storage Recla- o
o mation . 75 ';:'. -
T Section 5.3: Personal Computers Must Be Responsive 76 I3
S Section 5.4 Virtual Memory for Advanced Personal COMPUEETS .............ccornnnt 76 ot
;ﬁ Section 54.1:  Segmenmtion 76 :-‘.;
= Section 5.4.2:  Demand PAING ...........ccccceecmscsncemssrunemssssssssessrsssessonsassssmasssssesssases ” ey
22 Secton 5.5: Automatic Storage Reclamation for Advanced Personal Com- ‘t:.;::
>, puters - 78 RS
:.':3 Section 5.6: Reclaiming Storage by Counting References 79 RS
@ Section 5.6.1:  Immediate Reference Counting .........co.... 9 NN
, Section 5.6.2:  Deferred Reference Counting ........cce...ou... 81 .
f: Section 5.7: Reclaiming Storage by Finding Reachable Objects ..........ccccoenneenr 82 G203
o Section 5.7.1:  Mark and SWeep ........ccovernennninninivinnsenionns 83 e
‘;2 Section 5.7.2:  Scavenging Live Objects ..........covvevcvcrennverarenns . 83 ;EI:
S{ Section 5.8: The Generation Scavenging Automaric Storage Reclamation RN
Algorithm .........ccocicinnnnrcnsenaernsninee 85 o
?_-: Section 5.8.1:  Overview of Generation Scavenging Algorithm ...........ccccervvreneeen 86 -
o Section $.8.2:  Deuiled Description of Generation SCavenging ...................eeen. 87 PO
e o
,.'-”.; =

WP I VYL -t L S I LA I P L O R i~ e D RS IR Y .~ pm Tw e e . . S
RFORNE 4,._\-}._:_‘;..}:,\ DA A \\ AT TR e KA PN AL NAL *‘-'I'-c“-‘.\,"':’-‘"‘\f-_" .-'_:.» ENCAC




4 i S
NN
EOANRY
Section 5.8.3:  Comparing Generation Scavenging to Other Scavenging Algo- :‘:"-’;l‘,
rithms 93 B A
X Section 5.9: Performance Evaluation of Generation SCavenging .........ccceeeeeseses 94 _i_.'._}._
Section $9.1:  Evaluating Generation Scavenging in Berkeley Smallalk ............ 94 :f\':ﬁ;
Section 5.9.2:  Evaluating Generation Scavenging on SOAR 96 Lot
Section 5.9.2.1: SOAR Scavenge Duration 96 NS
Section 5.9.2.2: SOAR Scavenge Frequency 99 RIS G
‘ Section 5.9.2.3: Net SOAR Scavenge Overhead 100 M
Section 5.9.2.4: Generation Scavenge Trap Time 100 ';f;*
Section 5.9.3:  Summary of Generation Scavenging's Performance ..................... 101 RN
Section 5.9.4:  Performance Evaluation of Direct Addressing on SOAR .............. 102 :;:';j;f"
Section 5.9.5:  Architectural support for Storage Management 105 e
Section $.9.6:  Generation Scavenging and Activation Records ......cccveescersorese. 106 e
Section 5.9.7:  The Potential Problem of Premature Promotion 108 RS
Section 5.10:  Summary of Reclamation Algorithms 108 _}.:;{_,
Section 5.11:  Conclusions 109 “-i E 4
Chapter 6: Scavenging Data with Intermediate Lifetimes 111 R
Séction 6.1: Introduction m L
Section 6.2:  The Tenuring Threshold 111 b
Section 6.3: Analysis of a Single Scavenged Generation 116 L
. Section 6.4: Analyzing a Middle Generation 120 AL
! Section 6.5: Coatrolling the Tenuring Threshoid 123 T
! Section 6.6:  The Cost of an Offiine Reorganization 123 PR
: Section 6.7: Summary 124 :Zj-j:::::-
| bR
' Chapter 7: Conclusions . 125 e
! Section 7.1: Conclusions 125 NG
| Section7.2:  Future Work 127 A,
‘, Section 7.3: Acknowledgments 128 :';«é:;’.
' P‘s . -,
; Bibliography . 130 =
E Appendix A: Detailed Performance Evaluation of Individual Features ............... 140 '_';::
q Section A.1: Inroduction . rereressereanesnesssasneenenens 140 _'f-::_-}_
E Section A.2: Runtume Type Checking .........ccceeu.. w140 &:‘
) Section A.2.1: How Important are the Tagged Integer Insoructions? ... 142 B
] Section A.2.1.1: Tagged Instruction Frequency ............ 142 N it
: Section A.2.1.2: Cost of Omitting Tagged Arithmetic INSTUCHONS ......ccvrvuuncersennses 142 :,,-:::-' j‘
, Section A.2.2:  Evaluating the Impact of Adding a Compare-and-Branch In- {579
STUCHON ....ocucrrcrranansrsseansnnmsersssssssonsase 153 ;ﬁﬁ
i Section A.2.3:  Evaluating Two-Tone INSTUCHONS .....cccvrreemsersurnsaserssasnassassnssres 156 :‘_
Section A.2.4: How Important Are Tagged Immediates® . 157 ;:.-_:.:: \
E Section A.3: INEEIPrELAtION ......covcvirivnnnisirensniesninisinesssnssesssessssasssssessssssssssnisannans 157 x\:\_‘ !
: NN
| -
3 g
T NI a3 T e N n T N T TS S L e e




5 20 M S e it it I et e e St St s P R e e A i Jt‘_.'r',: :

:'. e
iv .
5 22
‘ . . o R

Section A.3.1:  Evaluating SOAR's Byt Facilites 157 Y
E Section A.32:  Evaluation of the loadc instruction . l64 o
i Section A.3.3:  Barrel Shifter 164 X .
N Section A.34:  Evaluating the importance of Multiply and Divide ........corcccrsseesee- 164 N
: Section A.35:  Evaluating the In1/Out} Skip Condition 168 oA
. Section A.3.6: Evaluating SOAR’s Conditional Trap Instruction ........cccccocveveveee. 169 g-';} f

Section A.3.7:  One-Cycle Traps 169 o
| Section A.3.8:  Evaluating the Performance Impact of Shadow Regisiers ............. 173 i
. Section A.3.9: Does SOAR Really Need Vectored Traps? 175 ey
) Section A4:  Procedure Calls 175 NS
:; Section A.4.1:  Evaluating SOAR'’s Register File Organization 175 s
- Section A.4.2:  Number of Registers per Window 177 DN
i Section A.4.3:  Analysis of Loadm & Storem 177 o
¥ Section A.4.4: Performance of Inline Caching 185 o
- Section A.4.5: How Fast Does SOAR Shuffie? 192 O
- Section A.4.6:  Evaluation of Parallel Register Initializaton 192 :::‘;'.:-
- Section A.4.7:  Return Options 196 Wt
: Section A.5: Storage Management 199 K.
‘. Section A.5.1:  Evaluation of the Generation Scavenge Tag Checking o
- Hardware 199 e
- Section A.5.2:  Frequency of GS traps 201 e
o Section A.5.3:  Evaluating the Pointer to Register Support 201 :’ 'J-
i Section A6:  lmplementation 203 i
R Section A.6.1:  Register Forwarding 203 BN
; Section A.6.2: Memory Accesses 204 "*'Eé.:
> Lo ¢
- Appendix B: Raw SOAR Data 207 e "'
] Section B.1:  Introduction w207 Tl
2 Section B.2:  Instuction Mix Data ; . 208 N
e Section B.3: EXeCUtion PrOfle DAtA ........coeeveeeerrsenesaesssssmssssrersenes 225 =
Z .
= S
o AN
- ik
R “,_ _
v wen
:3 '::';:::‘
3 P
~ o
M %
- R
5 R
‘o
'it! s
U R eI TN SN LIRS NE OO o NSRS

.

D) S S S A AV A SN
NS R BRI 0 30 IR ICIN N X R

BT T S P A S i ST I TN
S R T A R, G N A o A n DTN K et LN o
.\




' Table of Figures <.
; 3
] | S
13 i w"‘-
i . Figure 1.1:  NMOS SOAR chip 3 :
| Figure 2.1:  R-2 address word format 15 v
N Figure 2.2:  Scheme-79 data format : 17 A
N Figure 2.3: 3600 data formats 18 o
w2 Figure 2.4:  Microphotograph of RISC 1 26 Tl
" Figure 2.5:  Microphotograph of RISC II 27 Lt
o Figure 3.1: SOAR tagged dau types 32 o
) Figure 32: SOAR's immediate format 34 i
& Figure 3.3:  SOAR's instruction formats 36 O
3 Figure 34:  SOAR Program Status Word 41 o
' Figure 3.6:  SOAR’s register windows T
?f Figure 3.7:  Logical view of register file 44 T
::: Figure 3.8:  Caching the target address in the instruction stream ...........c.cccoeueeenene. : :;:',
b Figure 3.9:  Caching the target address in the instruction stream 47 3
o Figure 3.10: Fast Shuffle logic 49 o
a Figore 3.11: Indirect addressing rrs e s e 51
.. Figure 3.12:  Direct addressing 51 3\:;
:;: Figure 3.13: Generation tag checking in parallel with a store operation .................. 52 ;.*_.;}§
N Figure 3.14: The SOAR datapath 57 N
-~ Figure 3.15: Pipelining in SOAR 57 r*ﬁ_::%
! Figure 4.1:  Steps involved in a SOAR simulation 61 .
N Figure 5.1:  Virual memory vs. automatic storage reclamation 75 :Z:j:".'-:
::\ Figure $2:  Standard reference counting 80 ::: :
“ Figure 5.3:  Deferred reference counting rersbesseese e bR e s sas b st st en 81 : e
4] Figure 54:  Baker SEMUSPACES .........cccrrrereroncorsansercsssesssesassarasas 84 Y,
R Figure 55:  Generation garbage collection ceevvsernss s 85
N Figure 56: Generadon Scavenging's three areas for new objects .........ooeecevenes 87 'ﬁ:::;:‘
y Figure 5.7:  Bird's eye view of Generaton Scavenging ...........ccccceeerunnee - B8 ;::, -
Figure 5.8:  Predicting the duration of a SCAVENEE .......cccoverrecerrerenccrerrresenssessesnsenens 98 ;::-:::;'
Figure 5.9:  Growing with become .............ccocconrvrnreverrernnneareenes . 103 -3
?n; Figure 5.10:  Growing WithOUt DECOME ........coveveuncveecrscvsescnussssisessasssssssosomsessrnsssones 104 f_ 3
;2 Figure 5.11:  Fast address translation rsenessasenssnnenasas . 106 NN
'; Figure 6.1:  Effect of tenure threshold time on amount of data tenured .................. 114 S:;:Ij:_‘.
i: Figure 6.2:  Diagram of a system with a middie generation ............ceeeemeeeerverennne 121 N "
: =
A R
2 O
) ;'.:::::}:
& Eae
. - -

< g
>
3




AR

:' ’L(l}t,L.‘\,\'~ 3 :'.\‘ -

’\IA\‘&'

vi
Table of Tables
Table 1.1:  SOAR'’s most significant features 4
Table 2.1:  Some exploratory programming environments 11
Table 2.2:  Performance of Smalltalk-80 Compiler Benchmark 12
Table 2.3: R-2 Data tags 15
Table 24:  Burroughs 6700 dar formats 16
Table 2.5: Some Scheme-79 opcodes 17
Table 2.6:  Performance of the Scheme benchmark 17
Table 2.7:  Some Symbolics 3600 data types 19
Table 2.8:  Some 3600 opcodes 20
Table 2.9: Comparison of SOAR and Katana-32 22
Table 2.10: The testActivationReturn benchmark 22
Table 2.11: TestActivationReturn object code 23
Table 3.1:  Useful immediate values 34
Table 3.2:  SOAR Instruction Set 37
Table 3.3:  Space Penalty of Compilation 39
Table 34: SOAR traps and interrupts 41
Table 3.5:  Trap reasons by instruction category 42
Table 3.6: SOAR special registers 55
Table 3.7:  Processor Status Word fields 56
Table 3.8: NMOS SOAR characteristcs 59
Table 3.9: SOAR Architectural Ideas 60
Table 4.1:  Comparison of Performance Metrics 64
Table 4.2: SOAR Macro-Benchmark results, relative to Dorado .......eocevevvenneen. 66
Table 4.3:  Compiler Benchmark speed for various Smallalk-80 systems ............. 66
Table 44: Summary of features and performance impacts 68
Table 4.5:  Features in order of performance impact 69
Table 4.6 Trimming the Fat from SOAR .........crmininnsnesessorsessssnensonsssonsssesssssas 71
Table 5.1:  Traditional decomposition of storage MANAZEMENL .......cccvecrercnrecrernnane 75
Table 5.2:  Segmentation vs. PAGINE ...........c.vivevemrnneresssssssnnsassennssessssesassosssersacss 76
Table 5.3:  Paging erresesensssnenas 78
Table 54:  Reference counting sequence on SOAR 2
Table 5.5:  Static cost for reference counting on SOAR 82
Table 5.6:  Generations in Generation Scavenging for BS 86
Table $.7:  Performance of Generation Scavenging in BS ......... 95
Table 5.8:  Statistics on twelve scavenges simulated for SOAR ..........ceeiivernnacne 97
Table 59:  Space allocation rate benchmarks on SOAR ..........ccoomviircrenciicirenniennns 100
R e R e e e e e S S R

--------

PN AR

(]

i

NN RA)
Yy NN

EY

*




FF R UK A NA AN Y o Wi L N UL N . e ha 14 W ‘Latt e et T P U W

X
% . vii
R
o Table 5.10: Extrapolated vs. Simulated Scavenging on SOAR 100
s Table 5.11: - Generation Scavenge Store trapping overhead in SOAR ...........cceeee.. 101
‘R ‘ Table 5.12: Summary of Generation Scavenging’s Performance 101
I Table 5.13: Performance impact of eliminating becomes 104
i Table 5.14:  Static cost of object indirection 105
j Table 5.15: Summary of reclamation strategies 109
N Table 6.1:  Results of BS tenuring experiment 113
. Table 6.2: Summary of tenuring proposals 17
- Table 6.3:  Quantities to analyze a single generation 118
: Table 64: Measurements of an offline reorganization on BS 123
Table A.1:  Table of contents for Appendix A 141
’ Table A2: Frequency of tagged arithmetic instructions, Part | 143
Table A.2: Frequency of tagged arithmetic instructions, Part 2 144 -
i Table A.3:  Static Occurrences of Tagged Integer Instuctions In System ............... 145 ::,':CE:‘{
e Table A4:  Frequency of integer tag traps, Part | 146 S
‘ Table A4: Frequency of integer tag traps, Part 2 147 ::.:_;::
% Table AS:  Writearound for tagged instructions, Part | 148 A
: Table A.S:  Writearound for tagged instructions, Part 2 149 e
. Table A.6: Cost summary by instruction 149 :.::Z--‘:‘
b Table A.7:  Time cost of omitting tagged integer instructions, Part 1 .......cccoreeeeeee. 150 A
1y Table A.7:  Time cost of omitting tagged integer instructions, Part 2 .......cccccevvevceee. 151 5
) Table A.7:  Time cost of omitting tagged integer instructions. Part 3 .........cccueeenns 152 s
) Table A.8:  Static Cost of Omitting Tagged Arith Insts in SYS®M c.eeeeneveeccerssnnnenns 152 \{ o
b Table A.9: Upper bound on speedup with compare-and-branch, Part 1 ...........cec... 154 :f-{f Lj“:l
- Table A.9: Upper bound on speedup with compare-and-branch, Part 2 .................. 155 B
b Table A.10: Space savings for compare-and-branch 155 N
Table A.11: Projected time cost of manipulating PSW mode bit 156 NI
.. Tabie A.12: Space cost of mode bit in PSW 156 SN
[ Table A.13: Dynamic usage and cost of tagged immediate values ..... 158 AN
o Table A.14: Raw data for static analysis of tagged immediates 159 t:;.;:’{j
. Table A.15: Impact of eliminating tagged immediates 159 AN
Table A.16: Codes sequences for byte operations, Part 1 159 S
- Tabie A.16: Codes sequences for byte operations, Part 2 ..........ccveecunnenne 160 g
N Table A.17: Dynamic analysis of byte operations, Pant 1 ....... 161
N Table A.17: Dynamic analysis of byte operations, Part 2 ceemessennenneseeee 162
N Table A.17: Dynamic analysis of byte operations, Part 3 e 163 ‘:‘
Tabie A.18: Loadc Time Analysis, Part 1 165 B
s Table A.18: Loadc Time Analysis, Part 2 166 RN
.. Table A.19: Performance improvement of adding a barrel shifter - 167 RN
ﬁ: Table A.20: Time spent in muitiply and divide routines 168 ::::::.':::
<. Table A.21:  ADalysis Of In1/OULE CONMIGON ...coomvrmseserseressnssssssssesscsssssmrsne 168 NNy
Table A.22: Writearound fOr trap iNSIUCHON ..c.ocureeresensiseusnernessssssssessnsesenserssssessisns 169 "“"_ s
5 Table A.23: Time cost of omitting the Tap IRSTUCLON .......cccovunverrersisnscisisssssesaesassens 170 ::_:::::
' s
: B
:'I‘.""),:I.:.'_:.-_:',"f"_.-'\":_.(“.; X T N T T T L T Ry




f’;’n"y‘:‘h‘m'_‘ .

ot

o

Py ‘

£

rs
-

Y

) EREERLEL

M2 e

» s

“.l

1.8 A‘.}_ ;', LA

OO

~ =

o enl Ay Mgt Bav ek Ra¥ B §ae

Table A24;
Table A.2S:
Table A.2S:
Table A.26:
Table A.27:
Table A.28:
Table A.28:
Table A.29:
Table A.29:
Table A.30:
Table A31:
Table A.32:
Table A.32:
Table A.32:
Table A.33:
Table A.34:
Table A.3S:
Table A.3S:
Table A.3S:
Table A.3S:
Table A.36:

Table A37:.

Table A.38:

Table A.39:

Table A .40:
Table A 4]:
Table A .42:
Table A.43:
Table A.44;
Table A.44:
Table A 45:
Table A.46:
Table A .46:
Table A.46:
Table A47:
Table A .48:
Table A.49:
Table A.50:
Table A.51:
Table A.52:
Table A.53:
Table A .54:
Table A.5S:

Raw dau for static analysis of trap instructions

Trap frequencies, Part 1

Trap frequencies, Part 2

Time cost of omitting shadow registers

Simulating vectored traps
Time cost of non-vectored traps, Part 1

Time cost of non-vectored traps, Past 2

Analysis of register windows, Part |

Analysis of register windows, Part 2

Static analysis of register windows
Spill area analysis

Loadm/storem execution frequencies, Part §
Loadm/storem execution frequencies, Part 2

Loadm/storem execution frequencies, Part 3

Time cost of omitting loadm & storem

Raw data for statc analysis of store multiple

Inline cache performance evaluation, Part 1:
Inline cache performance evaluation, Part 2

Inline cache performance evaluation, Part 3

Inline cache performance evaluation, Part 4

Code sequences for various caches

Relative Performance of various caching schemes
Raw data for static analysis of caching

Inline cache prologue
Space overhead for the various caching schemes

Net space impact of caching schemes

Frequency of jump and call instructions
Cost of omitring fast shuffie

Evaluation of parallel nilling, Part 1
Evaluation of parallel nilling, Part 2

Static analysis of parallel nilling

Dynamic frequency of return options, Part 1

Dynamic frequency of return options, Part 2

Dynamic frequency of return options, Part 3
Dynamic frequency of tagged store instructions

Writearound for tagged stores

Time cost of omitting GS Tag Trap Stwre

Suatic frequency of tagged stores

Space cost of omitting tagged stores
Dynamic frequency of tagged store GS traps

Time cost of eliminating pointer-to-register hardware ............. -

Time cost for eliminating forwarding

Insouction vs. Data Fetches. Part | .......ccceecerecerennenne

------------

----------------------------

LI T ..'_.\‘..' AR
AR

m
172
173
174
175
176
177
178
179
180
180
181
182
183
184
184
186
187
188
189
190
191
191
191
192
192
193
194
195
196
196
197
198
199
199
200
200
200
201
201
203
203

ey

NN

Iy
- e

o™,

.,
'y

HRN
P o
DR IS

sl

>

[
i
S

o

e )
L.

I _s e 1w
e,
A

2

(%

AR

~
. "'.;.;...\

.""

(SRS
v A A

}'

PA d
A

¢

. "‘ in 3 2 T P
n ":'""."j‘ '?}’l LA
RS Ba

A A A Y
KX
4 0,

%I

e sl
s

*e :- :-,“' .
AL

l 7
rr

-




N

[y

Yol

CYNS AN

EASALNN

‘ A'i.'l‘.".";".'-

Table ASS:
Table B.1:
Table B.2:
Table B.3:

Table B.4:
Table B.S:
Table B.6:
Table B.7:
Table B.8:
Table B.9:
Table B.10:
Table B.11:
Table B.12:
Table B.13:
Table B.14:
Table B.15:
Table B.16:

" Table of contents for Appendix B

R AT AT R T LR L S TR AL Ehs S Lh i LA L G A ) e et T Tl

Instruction vs. Data Fewches, Part 2

" -‘. l.. -
e e

'y
o

g

oy ay
L3
AT

206
207

test3plus4 Micro-Benchmark Instruction Mix

209

testPopStorelnstanceVariable Micro-Benchmark Instruction Mix

X
AR

209

testActivationReturn Micro-Benchmark Instruction Mix .......c..cccceueeenen 210
westClassOrganizer Macro-Benchmark Instruction Mix ........ccooeeereennnee 211

testCompiler Macro-Benchmark Instruction Mix

r di}éi“i\ h P
Ay

L4
Rk
<P,

214

testDecompiler Macro-Benchmark Instruction Mix

» 5J.

217

P X

testPrintDefinition Macro-Benchmark Instruction Mix ................

testPrintHierarchy Macro-Benchmark Instruction Mix ........... ..
test3plus4 Micro-Benchmark Execution Time Profile .........ccoeouvecccnnace. 226

estActivationReturn Micro-Benchmark Execution Time Profile

estClassOrganizer Macro-Benchmark Execution Time Profile ...
testCompiler Macro-Benchmark Execution Time Profile ............
testDecompiler Macro-Benchmark Execution Time Profile .........
estPrintDefinition Macro-Benchmark Execution Time Profile ...

testPrintHierarchy Macro-Benchmark Execution Time Profile ............. 230

PRy - et e S T " t. . a" e e ot « et ;e BT T
RO N S AN A P RO AR A e ERSIS A _.-__.‘ RO N

SRR SIS S S S SIS

[4
..':‘

......... 220

RARRS

v
.

%
R

tp?
MRS

......... 226
......... 226
......... 227

---------

......... 229

DRI
W)

LT 4t
I.‘:,'.. N“o -
[ 4

11
.

%
. »
\I.‘-I.‘-':‘-'.‘-'."'.':«_

TR
»

S
4.0 A

5:.'
o

L ]
)
5

A

q

LT R R

. >
Rk

‘v
"c l"‘ :
s .

L
M

Bt e o e e
s Lt
‘3?1%}511

%)

[ A
7

© yr

s,
b



Chapter 1

Introduction

) Moons and Junes and ferris wheels
) the dizzy dancing way you feel.
y As every fairy tle 'comes real
I've looked at SOAR that way. . .

I've looked at SOAR from both sides now,
from win and lose, and still somehow
Jti’'s SOAR’s solutions ] recall.
I really don't know SOAR, at all.
**Both Sides Now"’,
(with apologies to) Joni Mitchell

“gh s wy o o=

7

Computer hardware technology has improved dramatically in the past decade. Com-

«s s s A UERE]

I

puters now cost Jess, run faster, and have more space for programs and data. This advance in

Y,

bhardware has created 3 demand for larger and more complex software. Unforwunately,

1y

Y software productivity has not kept pace with hardware technology, leading to a *‘software

The Smalitalk-80 system provides an environment that fosters rapid program develop-

e BN had
J\r

A

ment. The systém itself was developed on a large, high-speed, $100,000 personal computer,

e Ty

and most commercially available microprocessors, that are much more widely available,
cannot run it even half as fast. Regretfully, this lack of widely available high-performance

implementations has severely curtailed the system’s acceptance.

- -

It may be possible to surmount this obstacle with a reduced instruction set computer
(RISC) architecture. Such processors have demonstrated excellent cost-performance for

more conventional systems. However, RISCs have an architectural style that runs counter to

i el o v e

the conventional wisdom for exploratory programming environments, such as Smalltalk-80.

Insiead of an instruction set that reflects the semantics of the source language, a RISC
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instruction set reflects the demands of fast instruction decoding and execution.

We have investigated whether a reduced instruction set computer can provide good
performance for the Smalitalk-80 system. To this end we have analyzed the architecture of
and designed and analyzed the software algorithms for a reduced instruction set microcom-
puter system intended to run the Smallalk-80 exploratory programming environment at full
speed. This system matches the performance of the fastest Smalitalk-80 implementations to
date (1986), yet runs at slower clock and memory speeds. The machine is called SOAR, for
Smallalk On A RISC. Our colleagues have built two VLSI implementations of SOAR: an
NMOS chip (Figure 1.1) which has correctly run diagnostics, and a CMOS chip. In addi-
tion, two Multibus™.compatible boards have been designed by others to host our chip in a
Sun 68010 workstation [BID83, Bro84). Our ultimate goal is to demonswate SOAR in a run-

ning Smalltalk-80 system.

We bave also built Berkeley Smallalk (BS) [UnP83)}, a Smalltalk interpreter for the .

MC68010 that runs on d:esﬁn workstation. It has served as a test bed for many of our ideas
and as a source of information about the time-consuming operations required to suppon the
Smalltalk-80 sysem.

SOAR is a concoction of compiler echnology, run-time software, architecture, and
VLSI circuit design. This dissertation focuses on SOAR s architecture and run-time support
software: what SOAR is, how it was designed, and why it works.

*  The next chapter describes the previous work in this area. It starts with a brief descrip-
tion of some exploratory programming environments (EPEs), with particular emphasis
on the Smalltalk-80 EPE. It continues with a survey of architectures that supporwed
EPEs. Untl SOAR. these systems pushed the source-level semantics into the

hardware, sacrificing either simplicity or performance. The last part of this chapter l

covers previous reduced instruction set computers. which were all designed for
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_- languages in the Algol family. SOAR is the first reduced instruction set archiecture
a for an exploratory programming environment.
M ¢ Chaper 3 enumerates the problems that Smalltalk-80 presents and the solutions in
e
_‘ - SOAR's architecture. The effectiveness of each solution is represented by the time
at
b cost of its omission, based on data gathered from simulations. Table 1.1 summarizes
.‘E, these results.
.
, : o Chapeer 4 casts a critical eye on SOAR’s architecture. Simulation results show that a
. "~ 400 ns SOAR will maich the performance of a 70 ns ECL minicomputer. It will also
w run at about the same speed as an MC68020 microprocessor with a 60 ns clock, 270 ns
)
:'. memory, an on-chip instruction cache, and eight times more transistors than SOAR. v
sl :
To understand SOAR's speed, its architectural features are listed in order of effective- 77
< FASN
. { ness, from successes to failures. These results show that SOAR's language-specific ,’,; ::::
: 223
“ features approximately double performance. P
e  Chapter S delves intw object-oriented storage management — a considerable source of
' overhead and complexity for many Smalltalk-80 systems. For SOAR, we have devised
’-)
able 1.1: s most t features.
. malltalk-80 performance challenge:
. SOAR feamre significance
~ 1ype Checking:
:\'." tagged integers 26%
.2 two-tone instructions 16%
o terpretation:
A\ compiling to RISC instructions, ~100%
v inservextract instructions 33%
N . ure Calls:
: . register windows 46%
in-line cache 33%
., fast shuffie 11%
> bject Oriented Storage Management:
e . direct pointers 20%
; eneration scavengin 10%
. |
?. .
23
33 - %
Y N
» - "‘
= o
g N2

Iy I, . " m . - B . - -
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é Generation Scavenging, a software algorithm that cuts automatic storage reclamation e

overhead from 11% to 3 &, reclaims circular structures, and provides an additional G,

20% performance improvement by eliminating a leve) of indirection. In addition to 5? '.:
N

virtually eliminating the time cost of garbage collection, this algorithm allows us ‘s

A i ol R b o

remove object-oriented addressing from the architecture. A

e Chapter 6 furnishes some proposals for coping with medium lifetime objects and an ';-“
analytical investigation of them. SO0
¢ Finally, the concluding chapter presents the lessons we have learned from SOAR and T
our recommendations for future designs. %" 1
e  The appendices supplement the performance evaluation of SOAR's architecture: -’*§*,.-"
Appendix A conmins a dewmiled analysis of ecach feature's impact on speed and E.N"ij.

memory size, and Appendix B gives our raw performance data. TSy
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Chapter 2

ra)

Previous Work

2.1. Introduction

Exploratory programming environments (EPE) are software systems that improve the
programming process by applying computing power {She83]. In an EPE, a programmer can
quickly produce either a small- to medium- size program or a prototype for a large system.
The key to this productivity is viewing programming as exploration. In other words, an
implementor explores alternative designs, making sweeping changes rapidly and immedi-

CIT AN SY Y VI S S L S R S S W S . = % = - m———— —g

k o
.
ately seeing their effects. Exploratory programming environments also help out the pro- fi.:?;:
N grammer by providing mechanisms o reuse code from libraries, and by integrating tools like T
- ERY
a ) the editor, compiler, and debugger into the environment. (We would not count BASIC sys- -
¢ H
: ems as EPEs.) pS
A 33
:i ECL and Interlisp were two major early EPEs. ECL types were first<class objects. and N ﬁﬁ
i;‘ the binding of a type to a variable could be deferred until the first assignment to the variable
Cd
" [Weg71, Weg74). Functions could test the types of their arguments and act appropriately.
f These features made it possible to write programs that could be reused with objects of differ-
;Z: ing types, although in a more cumbersome fashion than in current object-oriented languages.
.l
'Q’: Interlisp, a dialect of LISP, faciliated programming by automatically comrecting most R::)&'
\~ . an
: typing errors and by providing tools to examine the stucture of large programs &
3 2
0 NN
2; [Tei69, Tei72). When personal workstations and bitmapped graphics became available, :'.f.':
ARy
’ o
< Teitelman was inspired by an early Smallalk system to combine Interlisp with a EE-E;'
A h) .\{
( user-interface that exploited multiple windows and the mouse [Tei79). Subsequent :"
':-
:: Smallalk systems have incorporated some of the programming aids in Interlisp. =7
.s. .f
3 ‘
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The Cedar programming environment was also designed to enhance programming pro-
ductivity, but has taken a different tack from Smallalk and Interlisp
{DeTB80, Tei84, Tei83, SZH8S, Rov84]. Smalltalk and Interlisp minimize the length of pro-
grams and reduce the time to change and test them. This reduction in information from the
programmer, coupled with the elimination of a link-editing or binding phase, places many
demands on the execution o} the program, which leads to the issues we address in this
dissertation. In contrast, the Cedar system relies on a soongly-typed language which makes
data types and module interfaces explicit. These features enhance the comprehensibility and
maintainability of large systems and allow the compiler to generate more efficient code. It
would seem that. of the ideas presented herein, only the storage management algorithms

would be important with respect to an implementation of Ceder.

This research centers on one EPE in particular, the Smalltalk-80 system. Although
other EPEs share some of its features, we will henceforth concentrate on Smallwalk. Over a
decade ago, a small band of ad.ventums at Xerox PARC set out to explore how computa-
tional resources could help people master the programming process. The Smalltalk-80 sys-
em [GoR83, Gol81, Gol84,Kra83] is their latest achievement. We have taken a simple
architecture and added a few features, resulting in a simple machine whose improved

cost-performance could make the Smalltaik-80 system available to many more people.

2.1.1. Object-Oriented Programming

The Smallualk sysiems inwoduced object-oriented programming, which provides
sbstractions for swucturing programs and reduces the code that must be written.
Object-oriented programming in Smalltalk-80 has three important aspects:
*  First there are no rype declarations in Smalltalk-80. Instead information is kept at run-

time to resolve a variable’s type. A variable may take on many different types.




..............

e Second, a Smalltalk-80 procedure call uses rhe type of the first argument to choose its
targer routine. The first parameter of every subroutine has an associated type, and the
subroutines are grouped accordingly. When s Smallealk-80 system performs a call, it
finds the routine associated with the type of the call’s first argument. As mentioned
above, the type is not known in advance, so this search must occur at runtime. This
overioaded call also makes it easier to reuse an old routine with a new type. When the
old routine uses the new type, operations defined on that type will be chosen at
run-time. It is not evea necessary to recompile the old routine. In other words, new

types can be added gracefully to the system.

*  Finally, types can be defined as extensions of other rypes. To define a new type that is
similar to an old one, the programmer can give the differences, and the new type will

inherit the format and functions from the old one.

The Smallaik-80 implementation has two more features that help its programmers.
For one thing, it runs on a computer dedicated to ope user. | Freedom from competing
demands lets the system provide uniform, fast response time in order to enhance produc-
tivity. The other featmre is automatic storage reclamation. Programmers of early
list-manipulation systems found it cumbersome to free unused storage explicitly. Instead,
they found ways to let the run-time support software reclaim unused storage‘ automatically
[McC60, Col60). Automatic reclamation provided a very important benefit: eliminating
errors caused by releasing storage too early. Despite its advantages, the high overhead asso-
ciated with automatic storage ml@ﬁm prevented widespread acceptance. This barrier

has been removed by faster algorithms.

2.1.2. Shortening the Edit-Compile-Test-Debug Cycle

In addition to reducing editing time, the Smalltalk-80 system reduces the time for the

compile. test. and debug phases of software construction. Conventional systems require a
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lot of time to rebuild a large program after a change. The Smalltalk-80 system uses incre-

mental compilation and dynamic linking to integrate changes rapidly.

e Incremental compilation. To reduce the work needed to incorporate a small textual
change, a system must avoid recompiling the whole program. Information in symbol
tables or parse trees must be maintained and reused for the portion that did not change.
Most systems supply separate compilation on a module-by-module basis. Recompila-
tion frequently takes ten seconds to a minute. The Smalltalk-80 system provides a
much finer grain of incremental compilation and much shorter response times. Magpie
is a similar EPE for PASCAL [DMS84). It compiles after every keystroke. In this

system, there is rarely a perceptible delay to rebuild a program.

e Dynamic linking. In a system that does all linking before execution starts, the pro-
grammer must wait a while longer after recompiling a module while the system relinks
the module to the program’s other modules. The result is that a simple change to a
large program takes a long time. In systems like Sn;alltalk-SO, modules are not stati-
cally bound together. Instead, they are connected as needed, dynamically. Dynamic
linking 'is essential to maintain short response time for changing large programs.

e Source-level debugging. Although most programmers construct their programs in a
high-level language, early systems forced them to debug. their programs in terms of
machine instructions and machine data types. Modern systems make debugging easier
by presenting breakpoints, errors, and variables in terms of the HLL source code
instead of the object code. For instance, they show where execution is suspended in
the source code and can execute a line at 2 time. In such systems, the programmer can
debug much faster because he has less work to do. EPEs go even further. When
debugging, the programmer can try the effect of a new statement by merely typing it
in. The Smalitalk-80 system will instantly compile and execute the statement in the

context of the suspended program. When the error is located. it can be corrected
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without terminating the suspended program. It can be restarted, or single-stepped from
the point of the error. With a system like Smalltalk-80, one can debug a program into

existence.

The Smalltalk-80 system represents a compromise between compiled and interpreted
systems. Programmers can produce more software when they can incorporate and test
changes faster and when they can take advantage of a powerful debugger. Most such sys-
tems are interpreters, saving much state and interpreting it at runtime. Of course, the extra
work involved imposes severe performance penalties. To run the fastest, a program must do
the least work; compilers attempt to determine as much as possible about a program’s
behavior statically leaving a minimum of work for runtime. The Smalltalk-80 system is a
happy medium. Enough information is compiled out to make good performance possible,

but enough is left in to make it easier to program.

2.13. Graphics

The Smalltalk-80 system takes advantage of biunap display hardware and pointing
devices to support multiple windows, selecting by pointing, pop-up menus, even diagrams of
program stucture [ShM83). This follows the adage that *‘A picture is worth a thousand

words."’
2.1.4. Rapid Response

High productivity demands consistent, split-second response time [Tha81]. So, most
EPEs we know of use dedicated personal, high-performance minicomputers.

2.1.5. The Bad News

Why do exploratory computing environments remain largely expenimental? They
suffer from poor cost-performance. For example. each of the EPEs in Table 2.1 requires a

powerful and costly minicomputer for each programmer. The research in this dissertation is
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an attempt to reduce the hardware cost for the Smalltalk-80 exploratory programming ._;
: N
environment. -
" I~
'y g
X 2.2. The Smalitalk-80 Exploratory Programming Environment FE ;
X Sl
] |.
X In 1972 Alan Kay started a group at Xerox PARC to explore how computational !
::"\: resources could help people master the programming process. The Smalltalk-80 system i
o, .
2% IGoR83, Gol81, Gol84, Kra83] is the culmination of their efforts. A dedicated. powerful per-

-

sonal computer hosts this innovative system. Multiple on-screen windows, pop-up menus,

El: and pointing distinguish Smalltalk-80's user interface from older systems. The Smalltalk-80 :f- ‘
e A
* f'.‘-’.
$: language has replaced operating on variables with sending messages to objects, and its o
Ty oo
run-time system automatically reclaims storage and finds space to allocate new objects. o
N iy
! ;\‘{ Smalltalk-80’s greatest strengths and its worst weaknesses result from the same design f-:f-j'
N e
2 decision, dynamic binding of types to variables and subroutines to call instructions. :.;;_.
~ : : : - e
o Smalitalk-80's designers have eliminated type declarations from the language, thereby mak- ~p
. T
"ﬁ ing it easier to write and modify programs. ;:'51.
» A
:' ) *\:\ q
.' On the other hand, computing a variable’s type or a call’s destination on-the-fly slows ;.*_ 2‘
- down the system, or increases the cost for a machine with adequate performance. The only r‘
b o
‘_'.'-‘,:l computer that has demonstrated universally acceptable Smalitalk-80 performance is the i;?,-:
.'._':' .r:'-.-
o Xerox Dorado [LPM81, Pie83, Deu83a). This 70 ns ECL minicomputer costs $120,000 (in S
:::::_f 1985) and dissipates over 2 kilowatts, requiring an air-conditioned room. Smalltalk-80 sys- EE
X N
-2 tems that run on more conventional, cheaper computers, including our own Berkeley :\"‘:
9 Table 2.1: Some exploratory programming environments. K
o Environment __ Language Developedat  Host CPU “Cost RN
o InwerLispD  InterLisp Xerox PARC  Dorado $120k _ oo
i'.j-: Cedar Cedar-Mesa  Xerox PARC  Dorado $120k oo
e Smalltalk-80  Smalltalk-80  Xerox PARC  Dorado $120k - ;:r.
“ Lisp Machine  ZetaLisp Symbolics Symbolics 3600 $80k < ol
Yo KRR
o 7
N i
3 e
\ e
" —3
. S
LA -
Pa e et «.,f\.; f-_f\f-,;‘\::-.::'.';\:;-.‘;._:’_-,-"-_::,:-,::-,:-_; ..... f, ..... s ..:\.;\;:‘:';;:’_:,;_;-._'_-.:;‘:_ .._;'. .::;:_. SN L A & JL o ;‘,_'-V X




: Smalltalk, suffer lackluster performance. For example, Table 2.2 shows the performance of N
! the official Smalltalk-80 compiler benchmark for several implementations, including a simu- "?. 2
lation of our machine. (See Section 4.1 for a description of the benchmarks.) eIy

2.3. Reducing the Cost of EPEs with Software Only

Y
=5

. ‘ How can we make Exploratory Programming Environments more cost effective and

WY
s
Ny

M more geoerally available? One way is with clever software on a cheap, conventional ey
. KSR
. machine. L. Peter Deutsch and Alan Schiffman have built such a Smallalk-80 system for a :3_;-?:-"‘
y 10 Mhz Motorola 68010 microprocessor [DeS84], a conventional (and successful) general .‘f;r— '5:'
9 %'
¥ L4
~. purpose microprocessor. The 68010°s microcoded control unit implements a 32-bit, :iz.;,_
W -~ J‘- N
¥ N . . %285
‘ register-based instruction set that runs at memory speed. Jumps pay a penaity to refill the Ei
: instruction pipeline, and calls must contend with register saving and restoring overhead. A S';: o
- "~ \
large flat address space helps support systems like Smalltalk and Lisp that require large, sin- ?';._
[, ~ o
; gle address spaces. ‘r\i 01
: Although the fastest 68010 insguction is 6 times slower than 8 Dorado microinstruc- Eﬁi}'.:
) ) . Y0008
, tion, the Deutsch-Schiffman system runs Smalitalk-80 only threc times slower.* The -';';';:';
‘~.~'s.$~.
! \)n. ~
“Table 2.2: Performance of Smalitalk-80 Compiler Benchmark. .
; R " Dolphin | VAX-11/780 | 68010 SOAR DA
| Machine (Xerox) | (Xerox) | (DEC) | (Xerox) . (UCB) e
: i Year of introduction 1978 - 1978 1978 1984 - 1985 :;:j.r:;‘:
: " Technology ECL___TIL TIL NMOS__NMOS RO,
i Cycle time 67ns  180ns 200 ns 400ns 400 ns gt
: Virmal machine ] . RN
. . impl tation microcode assembler - :.;_';.::
: Object pointer size 16 bits 32 bits RO
' Relative Performance: Dorado = 100%, larger is faster -:b;; ‘
T (100%) 1% | 8% | 40%  103% pltedive
; 53
: * The syswm has now been poried 1o the MC68020, in s SUN 3 workstation. This processor reos ot 16.67 Mhz. with iy
) wait states (SSSBS). The fastast possible instruction runs in theee clock cycles. or 130 as. The memory sysiem can deliver & R
. 32.bit word in 270 us. So, the cycie time for s simple instruction would seem 10 range from 180 as 10 270 ns. depending on .+.,"\~'
whether the instruction is cached. On this machine, the Xerox 68000 Smalitslk sysiem can exscuie the compiler benchmark A0
0% s fast as & Dorado. e
) AN
; T
: J':q‘.'l
| e
| =
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7
b v
¥ YO
o efficiency improvement over the Dorado arises from the following software techniques: 3
¥ ’
. *  Dynamic manslation. Instead of being interpreted, Smalltalk-80 subroutines are .
:‘ . l""“
b translated into 68010 instructions when first called. The wansiawd versions are £
i'l . . "- .."
" directly executed and then cached for later use. o
3 o In-line caching. Each procedure call requires a table lookup to find its target subrou- :Ef:
- ) -
- %
ﬁ-j‘ tine. Even though a call could invoke many possible targets, there is a simple way to ,-;E,E
i S
3 predict the target of any given call. 95% of the time, a call will invoke the same rou- :_;‘;;:
3 tine it did the last time [DAmb83). Thus, after performing a lookup for a call instruc- :\:;:]
> ,:.‘_'-‘
3 tion, the Deutsch-Schiffman system overwrites the call to the Jookup routine with a ,'.::jZE
! i
iy call to the wrget routine. The next time the call is executed, control bypasses the e
N lookup routine and goes directly to the previous target. Of course, the other 5% of the E&?

i
WL
—
E

time, the target bas changed. So, each subroutine starts with a check to cause another

) Wi
y j %
~ lookup if necessary. In this manner. the targets for subroutine calls are cached in the 1.; :
T
) instruction stream, eliminating costly lookups. T;:
\ PR
: s
) e  Volatile contexrs. The Smalltalk-80 language specifies that its activation records can :.3‘2
e
. be manipulated like any other objects in the system. Although this simplifies the _;:
‘-f DAY
) debugger, it creates more work for calls and returns and thus bures system perfor- E‘:j
~ RSLY
a5 mance. For example, when saving the program counter, a call must first convert it PO
l‘.A‘
: from a pointer into a tagged integer offset. Deutsch and Schiffman have minimized the =
I8 _ ‘*:‘:
;.i\ overhead by providing multiple representations for activation records and automatic :::{-
’ ‘.P\:
A conversion between them. In this manner, they defer expensive conversions as long as t:‘,s
[§
e possible. Since very few activation records are ever examined by the debugger, most i!
o RN
2:'. of these conversions are never performed at all, significantly reducing subroutine call :'.E;
>3 \:\\
o8 overhead. ) t*
5 =
-:“’ » .':'
o, ALY
:" ‘:'\'
N 4
= -
oy i
"\ L I I o e e s S e eV L N P T I L I e s S O e At LSS L R LR A GRS ':‘\
Yy s , - , SO -_\ ,‘. .,\. .7 N N N N e, -.',-.j\:',:.i- e -.};_-,'_1.';\:; Oy \-',_r. oy \r \("' .\‘..;_..\_;:,.:_.:_.:




-

. he e se

e ar -
& R

14

e Deutsch-Bobrow deferred reference-counting. In addition to activation records, a
Smalltalk-80 system allocates a new object every 80 instructions on average [Ung84]).
‘fhis heavy burden can make autoﬁnu'c storage reclamation a system bottieneck. In
this system, Deutsch-Bobrow deferred reference-counting {DeB76) reduces storage
reclamation overhead to 9% of the total CPU time. |

2.4. Hardware for Exploratory Programming Environments

In addition w innovative software, special-purpose hardware may further reduce the
cost of an EPE. In the past, researchers have closely coupled the source language semantics
to the hardware-supported operations and data types. Although memory-efficient, this
approach has usually resulted in increased cost and poor performance. This section exam-
ines five computers: the RICE computer, which introduced tags. the Burroughs 5700,
Scheme-79, and Symbolics 3600 machines designed for specific high level languages, and
the Katana-32, another microprocessor for the Smalltaik-80 system.

2.4.1. The RICE Computer
The R-2 computer developed at Rice University was s tagged architecture with sub-
script address calculation and bounds-checking hardware [Feu72):

* A wide, 62-bit word size allowed an array’s length and initial index to accompany its
base address.

. A rich variety of numeric types, control words, and address words were encoded in the
R-2’s four tag bits. (See Table 2.3.)

The R-2 design simplified its compilers, provided a measure of protection for the operating

system. and reduced the amount of data needed by the debugger. Although it did not max-

imize spec, this design fostered sharing among many users in a common address space. To

our knowledge, the RICE computer was the first to add tags to data.
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Initial Index ﬁ
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Indirect tags i
Restricted access _:::::
Direct tags RS
s
Software tags (trace bits) —
Write lockout f.f,j:
Pari oy
” &
Figure 2.1: R-2 address word formas. The length and index of the first element accompany e
the base address. ¥ -
— — N
Table 2.3: R-2 Data tags. | t':.
O > ‘,'.‘
Tag Meaning : o

0000 mixed or untagged \

0001  (unassigned)

0010  (unassigned)

0011  (unassigned)

0100  real, single precision

0101  54-bit binary string or integer
0110  double precision

0111  complex

1000  undefined for normal operations

0

A N

] 2

cy
o
AN

1001  partition word e
1010  relative control word Y
1011  absolute control word e
1100 relative address, unchained o
1101  absolute address, unchained el
1110  relative address, chained A
1111 absolute address, chained )
e
by
2.4.2. The Burroughs B5700 and B6700 Computers L
N |
In the sixties and early seventies, the Burroughs Corporation introduced the first com- E
I~
mercial computers dedicated to a high-level-language, their 5000 and 6000 series [Org73]. ;::ﬁ
- r,:.c
A ugged. stack-oniented architecture was chosen to host an Algol superset. Memory was at P f*-:
8 premium in those days, and its segmented virtual memory system enabled the BS700 to :::f
N
)
N
;;;
~
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operate with oaly 32,000 words of main memory. Paradoxically, adding 3 tag bits o each
45-bit memory word saved memory by reducing the number of words needed. For example,
tags on data reduced the size of instructions by permitting a single add opcode to serve all
types of numbers. Tags also helped with managing the stack and accessing data souctures.
Table 2.4 illustrates the 6700's data formats. A substantial quantity of hardware in these
machines was devoted to supporting stack-based, block structured computation. The 5700

and 6700 proved that commercial computers could be designed for a high level language.

2.43. Scheme-79
Scheme-79, an early high-level language microprocessor, directly executed a dialect

of Lisp [SHJ81].

e Each 32-bit word contained one bit to aid garbage collection, seven bits of type and
opcode information, and a 24-bit pointer. (See Figure 2.2.)

e  An innovative and interesting design, Scheme’79 pushed Lisp abstractions to a low
level to attain the power of interpreted execution at lower cost. For example, many

opcodes were needed to maintain the correspondence with source-level Lisp

[Table 2.4: Burroughs 6700 data formats.
Class of Operand
_2: of Word Tag
numbers
single-precision 000
double-precision (2 words) 010
" | descriptor words
segment 011
data 101
consrol words
indirect reference word 001
stuffed indirect reference word 001
mark stack control word 011
return control word 011
top-of-stack control word 011
program control word 111
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qc type datum

! } :
1 7 f 24 cx
1 7 L 24 cdr
: i

GC type datum

Figure 22: Scheme-79 dasa formar. Two of these words make up a list node.

primitives. (See Table 2.5.) As a result, microcode. microsubroutines, and nanocode
were used to fit the control circuitry on-chip. Scheme’79 had good performance com-
pared to other interpreters, but not when compared to compiled Lisp. This is shown in
Table 2.6, from [Pon83a). These data suggest that a machine that is specialized for a

particular system must also exploit compilation to attain high performance.

Instead of a linear sequence of instructions, Scheme—-79 used a Lisp binary tree for pro-
gram control, each node consisting of two words. T first word was the instruction

and the second was a pointer to the next insgruction. The instruction format is the same

[Table 2.5: Some Scheme-79 opcodes.
APPLY
CAR
CDR
CLOSURE
COND
CONS
EQ
FIRST-ARG
GLOBAL
LIST
LOCAL
NIL
PROCEDURE
SEQUENCE

Table 2.6: Performance of the Scheme benchmark.
VAX 11/780 Franz interpreter 2 min
Scheme chip (projected) 1 min
VAX 11/780 Franz, complied (normal funcall) | 8.7 sec
VAX 11/780 Franz, compiled (local funcall) 3 sec
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as the daa format shown above. This non-sequential format prohibits instruction pre-

fetching and so reduces the speed of macro-instructions.

o Alldan.includingd\émckconmts. were kept in memory as lists. In addition the
_memory reference overhead, this approach wasted time to reclaim list space for tem-
porary values. Even with a microcoded link-reversal mark-and-sweep garbage collec-
tor [ScW67, Sta80), Sussman estimated that Scheme would spend 80% of its time in

the storage allocator.

The Scheme-79 chip was fabricated in the MPC-79 Multi-University Multiproject
Chip-Set at A = 2.5 1 (5 micron line width). It was 7500 p long and 5900 p wide. One of
the fabricated chips ran small programs and reclaimed storage. Fibonacci(20) took 100 mil-
lion cycles (@ 1600 ns) with a 64KW memory that was half-full. Over two-thirds of those
cycles were spent collectink garbage. Scheme-81 is a successor to Scheme-79 with more
sggressive silicon technology (A = 1.5, 12.090u w x 12,000u h) [BGH82). Its designers est-
mate Scheme-81 would nm five times faster than Scheme-79. This would still run the

Scheme benchmark more slowly than compiled Franz Lisp on a VAX 11/780.

(2.2 32 J

daa type immediate oumber
CDR code
l2__s 28 )
CDR code

Figure 2.3: 3600 data formars. There are two formats — one for oumbers and another for
pointers.
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2.4.4. The Symbolics 3600 Lisp Machine

NV,
R

Sy

L4

o
N
I A

The Symbolics 3600 is a TTL personal minicomputer for Lisp [Roa83, Moo85]. It has

LTS A
1

&
s "

n?‘! U
:;' : good performance, substantal complexity, and high cost — $80,000 for each programmer.

. 9

s .-

N ' e Each word contains 36 bits: a two bit field for list compression (CDR-coding), a type X
4 field of two bits for numbers or six bits for pointers, and either a 32-bit data field ora

b

) 28-bit pointer field. This provides a rich selection of hardware-supported types. Table

A
g 2.7 lists some of the 34 types implemented by the 3600's hardware and firmware.

o »  Each 3600 instruction is 17 bits long, with nine bits of opcode and eight for the
N
Y operand/address. There are seven instruction formats. Table 2.8 gives a sampling of
e
3
% the opcodes.

-; e  Some of the 3600’s instructions perform complex operations. Instructions such as . :
Ij multiply, divide, and store-array-leader may take many cycles to complete. These \5-_.'
", “d :_
~ instructions must also handle many different data-types. These factors combine o ;"

L Lo

o require almost a million bits of control store, about twice that of a VAX-11/780. S

L

" :':‘\:F

: e  Tags in the 3600 minimize the cost of dynamic typing. In conventional systems, a .:;:-5_

} ~
" datum’s type must be determined before it is used. A 3600 instruction assumes a AN
v :‘\‘::
. [Table 2.7: Some Symbolics 3600 data types. ‘x;:;;
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pop-n-save
movem-local

TS PO L2 S PP T semmesy

pusb-instance-variable
movem-instance-variable
instance-ref

w2 Function calling

call-0-stack
call-n-return
funcall-1-stack

i Binding and function entry

take-n-args
take-n-optional-args-rest

N Function return

retumn-stack
return-multiple

E" Quick function call and return

Pop)

&s Branch

branch
branch-true-¢lse-pop

" Cach

cawch-open-stack
unwind-protect-open

» Predicates

«
»a

eq
not

fixp
floatp
symbolp
armayp

3
|

.\'

- b
-'.-oc

AT

add-stack
subtract-stack
multiply-stack
quotient-stack
remainder-stack
rot-stack

List and symbol

b

Y

LI

',
o

car
cdr

rplaca

set

symeval
property-cell-location
package-cell-location

Array

array-leader
store-armay-leader

Subprimitive

halt
%multiply-double
Sdata-type

%pointer
%stack-group-switch
%ogc-tag-read
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N likely type and proceeds, while simultaneously verifying that assumption against the Yo
\ ' v
N tag. If the assumption is false, the 3600 aborts the current microcode sequence and A
:s S

_ stants executing microcode for the required operation. This saves time for operations C}' ¥

) Fot i
rl- i‘ t

J on the most common types. iy
t—"— -

e An area-based automatic swrage reclamation algorithm reclaims space by incremen- ' ..ji‘:,'

A

tally copying surviving objects. The Symbolics machine has paged virtual memory ;‘ﬁs‘_:
and its paging hardware aids storage reclamation by recording which pages of per- N h

manent objects contain references to eemporary objects. Area-based copying reclama-
tion is very efficient. (See the chapter on automatic storage reclamation.)

e  The 3600’s microcycle time varies between 180 and 250 ns, making it one of the
fastest commercially available personal computers for an exploratory programming

environment [Pon83b].

Although providing good performance, the 3600°s $80,000 price tag reflects the cost of seek-

ing hardware solutions to system problems.

2.4.5. Katana-32

Midway through the SOAR project, we learned of the Katana-32, also known as
Sword-32, an independent attempt by a group of researchers at Tokyo University, to build a
fast VLS] Smalltalk-80 microcomputer [SKA84, Suz84). Unlike our RISC approach. they

have continued with the traditional complex instruction set (CISC) style of computer archi-

ST ST T e A XS S TS W RE GRS AN T Y R BT aTA A A WEENLT V2T £ F BN

wecture. Table 2.9 compares the Katans and SOAR designs. Katana's large microstore, vari-
able length bytecoded instructions. and 160 registers. suggest that it is basically a Dorado on
a chip. Table 2.10 shows the benchmark used for their performance predictions, with Table

2.11 showing the resulting object code for both machines.

The designers of Katana-32 are relying on aggressive VLSI technology for their perfor-

mance projections. Their chip will have five times more transistors than SOAR, and have
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Table 2.9: Comparison of SOAR a:id Katana-32. ' '§_ :’."
( ' OAR _ Kamna-32 , '
architecture RISC ! bytecode interpreter
number of instructions 20 ' ~46 5
instruction formats 3 i -9 i
instruction leagth lword . 1-3bytes i
data path width 32bits | 32 bits |
microstore none | 4Kw x 45 bits i
registers 80 ' 160 !
cycle time $10nst 12Snst i
number of wansistors 35,700 ~200,000
testAcnivationReturn micro-benchmark*
code length 72 bytes - 21 bytes :
avg cycles per recursion | 141 49 !

S
B 8§ A1

XXX
R

Rl
&;‘ A

TN

A4

'
n

Py

5 44 .

' &

>

v
X

RS
N

%)

“
-";'(’

o
Y Yell N

LA

.. .'.’.{

‘,‘I.-'.n‘ 'y
?5 2

AR
')

]
I/

[Table 2.10: The testActivationReturn benchmark.
malltalk-80 Pidgin ‘
recur: tl recur(t]) {
t! = 0 ifTrue:["self]. if (t1 =0) return
self recurz tl - 1. recur(t] - 1)
“self recurs tl - 1 recur(tl - 1)

i }
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* This one micro-benchmark is not a fair companson. However, 88 far s we know, it is the only Katana performance
figers availsble.
+ 12.5 with » bener compiler.

.

$ 510 s 15 the measured cycle time of working NMOS SOAR chips. including 110 as for the unexpected jump and call el
delay [Pen8Sb. Pen8Sa). (See Section 3.4.3.) 125 ns is the projeciad cycle ume for Katana [Suz84).
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.' Table 2.11: TestActivationReturn object code.

SOAR Machine Code cycles
! %loadc (r_receiver)classOffset, ré 2
Sload (r_returnAddress)0, S 2
%trapl pe 15, r6 /* cache miss */ 1
skip eqr tl,0 1-2
jumpt +2t 1
remw r_returnAddress. | 2
sub rtll,r6 |
%addt 16, 0, 15 /* synthesized move */t 1t
| %add r_self, 0, r6 /* synthesized move */ 1]
i call recur 1
i <selector>
| sub r_tl, 1,16 1
%addt 16, 0, 15 /* synthesized move */1 1t
oadd r_self, 0, r6 /* synthesized move */ 1
call recur 1
%add 16, 0, r_retVal 1
%trap2 geu r_retval, CONTEXT_TAG 1
retnw r_returnAddress, 1 2
| length 72 bytes
. min time 9 cycles
| max time 19 cycles
average 14 cycles
Katans-32 Machine Code [SKA84, Suz84) cycles
pushTemp: 0 3
pushConstant: 0 2
send: = 3
jumpFalse: 10 3-6
rewmSelf 4
pushSelf 2
pushTemp: 0 3
pushConstant: 1 2
send: - 4
send: recur: 21
i pop ]
i pushSelf 2
- pushTemp: 0 3
. pushConstant 1 2
: send: - 4
- send: recur: 2]
remmTop 4
. length 21 bytes
i min time 15 cycles
| max tme 83 cycles
| average time 49 cycles

+ These inszructions could be eliminswed by & bener compiier.
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twice as many register on the datapath, yet a cycle will only take one third the ime. We

believe that could SOAR could aiso run considerably faster if implemented in that technol-

ogy-

2.5. Reduced Instruction Set Computer (RISC) Architecture

The machines described above are more elaborate and expensive than conventional
computers. We need a machine that has high performance at low cost. One recent style of
computer architecture, the reduced instruction set computer (RISC), claims to meet those
demands for traditional programming systems [PaD80, PaS81, PaS82]. In this style there is

a much closer coupling between architecture and implementation.
To design s RISC,

» start with a fast and simple register-based instruction set similar to microcode in other
machines, then

+ identify the tim.e-consuming operations in typical programs, and finally

» take the hardware saved by simplifying instruction execution and dedicate it to speeding
up the time consuming operations.

RISC designs contrast with traditional high-level language computers that rely on long

microcode sequences to provide complex functions ‘‘in hardware.’’ Instead of microcode,

RISC systems rely on software to provide complicated operations. Of course, software con-

sumes memory, but we would gladly add memory to gain speed. The rest of this section

touches on several imporant RISCs: IBM’s 801, Berkeley's RISC I and II, and Stanford’s

MIPS. These reduced instruction set computers all point in the same direction, more perfor-

mance with less hardware.
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, {\ 2.5.1. IBM-801
3 The IBM-801 computer pioneered many RISC concepts [Rad82], including a simple
':": load/store instruction set and the coupling of architecture design with compiler technology.
-
:_3 . A sophisticated graph-coloring algorithm enabled its compiler to optimize register allocation
> over a fairly small register file [Cha82]). Consuucted in ECL, the 801 attained excellent per- -
§ formance. Although this work was not published immediately, it pioneered the benefits of a E:;';:‘
\ ‘E:; reduced instruction set. ?3_
.:‘ 252, RISCland 11
- The RISC I and II microprocessor chips were designed and built at Berkeley to yield
s high performance for the C/Unix environment [KSP83]. Figures 2.4 and 2.5 are photo-
f graphs of the RISC I and II, respectively.
e
’\:': J True to their names, these reduced instruction set computers have about two dozen
~ - instructions in their instruction sets, and are distinguished by the simplicity and com- £
| pactness of their control circuitry — 5% to 10% of chip area. This contrasts with 50% ?2
‘:E _ for more typical designs. The minimal and simple control circuitry shortens the design :-ié
. time as well as instruction cycle time. )
;:g ¢  These systems were designed for existing compiler technology. In this technology,
:: subroutine calls are slow because they save and restore registers. RISC I and 1I speed
i ~? up subroutine calls with hardware that eliminates this source of overhead. To accom-
4 :g plish this, they spend the area saved by simplifying the conuol circuioy on a large
A on-chip register file, organized as overlapping windows.
E: In addition to providing good performance, reduced instruction set computers are easier to (}"
lv ";' design. RISC I met the goal of functional correctess on first silicon, and RISC I ran at full *S:'
h‘. speed on first silicon, outperforming superminicomputers using the same compiler technol- ( :.:-‘:
ogy. A more complex architecture would have jeopardized these goals.
e
IR
i.\..-' R R A u-'v-".'Q.'»"}"Z-'}‘}‘Z-‘i-Z"':-"l-":-‘:-:-3".-‘:-".-‘}‘:-‘I-‘_-:‘:'li‘;-fl'-;:\j.- NI
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MIPS sands for Microprocessor without Interlocked Pipelined Stages ‘ -
[HUPS3, HIB82). It refines reduced instruction set architecture by eliminsting pipeline inter- g’f:
lock hardware. Instead, the MIPS project has developed effective algorithms to schedule Eﬂ
instructions for the pipeline sutically. The results are promising: —

2 *  Instruction dependencies are handled with a one-stage delayed branch. (The instruc- --‘,-".

a
;n. 'l.. K
Ll

tion following a branch is always executed.) The MIPS reorganizer fills 70% of the

S
~Ny

{c slots after delayed branch instructions. Since these branches account for 20% of all

NS
e

s

% instructions, and since MIPS has one delay slot per branch instruction, there are 20
()
o delay slots for every 100 instructions. Filling 70% of them leaves only 6 wasted slots

LR
1 »
LSRN

per 100 instructions, which is only 6% slower than the (probably unrealizable)

el \
e

. Data dependencies are also handled by reordering instructions. The performance of LT
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H

code generated this way is within 3% of the code that could be run with hardware pipe-
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)
v

line interlocks.
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*  Another finding of the MIPS project is that a word-addressed machine can run most

_;.’ -.‘:3
,:‘,' !

programs faster than one with byte addressing. The problem with byte addressing is
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o
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that the extra circuitry required can slow down word references.
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¢ MIPS demonswates impressive performance: a simulated MIPS CPU with a 4MHz
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clock runs benchmarks about five times faster than a 8Mhz 68010.
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The MIPS project blends simpler control circuitry with more sophisticated optimizing com-

XN

piler echnology to achieve more performance with Jess hardware.
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o ummary i
B .ﬁ_
The Smalltalk-80 system provides a8 programming environment that boosts a b
LI ' _41‘
o programmer’s productivity. It does so by exploiting the object metsphor to shorten the .Eﬁ
H ;’ . . "
i.’:ﬁ edit-compile-west-debug cycle. However Smalltalk-80, along with other exploratory pro- \'&
)
e gramming eavironments, runs slowly on conventional hardware, :&
3¢ i
-‘-;'.“, We have designed a reduced instruction set computer, and added feamres 1o it to sup- %
o
L
£3 port Smalitalk. In doing so, we have followed in the footsteps of other architecture projects: Eﬁ
0 ¢ The RICE computer pioneered tags, 35 2 means to control data manipulations. =
by o
s N
:x.‘ e  The Burroughs B5700 and B6700 computers supported Algol with tagged data, j::;:
EN
descriptors, and a tailored instruction set. ot
W ~5
) oYy
, e Scheme-79 was the first attempt to marry Mead-Conway VLSI design with an interpre- E\. ‘
} WY
3:‘, N tive language. red
ey - ' 3
N e The Symbolics 3600 Lisp Machine is a commercially successful computer dedicated to }3[
~ )
‘f-'_‘}'j 8 specific exploratory programming environment. :‘E
i\"" f:"f
' «  IBM-801 revived interest in simple computers and highly optimizing compilers for £
; >
Ejl pon-floating point applications. E:‘E
) o
Y «  RISC1and Il at Berkeley taught us much about instruction sets, register windows, and :£
£ )
. data path design. e
o) 7 : J':.:
’.‘5 ¢ The MIPS machine at Stanford encouraged us to forego byt addressing. =
- L
!’ “ ' *:‘
";: SOAR combines a simple, RISC architecture, with enough tagging to support the com- :
A mon cases. In the following chapters. we describe SOAR's architecture, assess the worth of "—
o2 N
§ each architectural feature, explain important algorithms in its system software, and propose &:
] : a :
,_2 A designs for future systems. ’ :!
o =
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: Chapter 3
"
t
:E The SOAR Architecture
§
Y
T N
g 3.1. Introduction N
® x$\$
) Yyt )
~. This chapeer describes the SOAR architecture, contrasting SOAR with its predecessor. :§;$
' X O
w2Xe
“‘{ RISC II. Most innovations in SOAR compensate for sources of overhead in Smalitalk-80
: ]
N e
: systems: run-time type checking, virtual machine interpretation, elaborate and frequent pro- .}"‘_'.:\'é
) NN
. cedure calls, and maintaining many small, dynamic data souctures. We conclude with an Q:::
!
£ overview of the implementation, detailed in Pendleton’s doctoral dissertation [Pen85b). A
ll
summary of this chapter has been previously published [UBF84]. A more detailed architec-
v tral description appears in [SKF85].
i Two figures-of-merit accompany each feature: execution rime and memory space. We :_{:-;f
- My
Q) gauge a feawre's significance by examining what would happen if we left it out. Thus an t}zﬁ
\ . [}
; omission time cost of S0% means that a job requiring 100 cycles on full SOAR would take 3Re
100 + SO, or 150 cycles without the feature. Likewise an omission space cost of 33% indi- =
1 . :\-."._'
b cates that the whole Smalltalk-80 system would grow by 33%, from 1.5 mB w 2.0 mB. Re%
t‘ '\‘ s‘
‘N With these metrics, we can find the combined impact of removing two independent features ;‘_:;2
b
simply by adding the omission costs for each. These dam are the results of simulations and :-:~:‘;
| N
% assume no radical compiler changes. (The derivation of the numbers is explained in the next f:;:'-
» Y ‘,\‘
' R9LS,
chapter and in Appendix A.) ;‘;
“~
3.2. Type Checking :'.j;-.j
5
~ The FORTRAN satement *‘] = J + K'’ denotes integer addition, and can be performed s'i;::
: with a single add instruction. But, since Smalltalk-80 has no type declarations, J and K may '._:—
7 b
: hold values of any type, from booleans to B-trees. Thus. every time a Smalltalk-80 system e
= .
. v
; %3
R T e R By AR AR
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evaluates **J + K", it must first check the types and then perform the appropriate operation.

Measurements of conventional Smalitalk-80 systems show that over 90% of the ‘‘+’* opera-
tions do the simplest possible operation, integer addition [Bla83c]. Since a type check takes
at least as long as an add instruction, most Smalltalk-80 systems waste a lot of time checking

types for integer arithmetic.

3.2.1. Tags Trap Bad Guesses

The purpose of data tags in SOAR is to improve puformhee.notwdiscoverprognm
errors as in the R-2 and B6700. SOAR'’s instruction set follows other Smalltalk-80 imple-
mentations in having only two types of tagged data: integers and pointers {GoR83). In
SOAR. the high-order bit of each word distinguishes these two types. For arithmetic and
comparison operations, SOAR assumes that the operands are integers and begins the opera-
tion immediately, simultaneously checking the tags to confirm the guess. Most often
(>92%. Table A.4) both operands are integers and the correct result is available after one
cycle. If not, SOAR aborts the operation and traps to routines that carry out the appropriate
computation for the data types. Figure 3.1 shows the SOAR tags. This feature is very
important; without it, SOAR would run 26% slower and require 15% more memory (Tables
A.7 and A.8). SOAR is the only Smalltalk-80 system that overlaps these operations. Every
other Smalltalk-80 system incurs a time penalty for serial tag checking. It would be very
difficult for an optimizing compiler eliminate these checks in the absence of type declara-

tions.
32.2. Conditional Skip Instructions

Although condition codes have been widely used to decouple a test from a branch, they
are awkward for a Smallalk system. Instead of condition codes, SOAR has
compare-and-skip instructions that quickly perform integer comparisons. Remember that

Smallaik has dynamic type binding. Thus, in SOAR, *‘i < j°' must be computed with an
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N
format of integer data - :
: e e - N
BN
: format of poister data :f-“:ﬁ
I"-“. N
f Figure 31: SOAR sagged dasa types. SOAR suppons two data types, 31-bit signed in- BT
) tegers and 28-bit pointers. Pointers include a generation 1ag (as explained in Section 3.5.1). Sl
' SOAR words could have contained 32 bits of data plus one bit of tag for a total of 33 bits. IONIN
i The scarcity of 33-bit tape drives, disk drives, and memory boards led us to shorten our
words 10 a toal of 32 bits including the tag (31 bits of data). _:,:‘;,“
| L I
LN
: instruction that checks the tags of i and j as it compares them. If the condition holds, there is NN

a one cycle penaity for skipping an insguction. If the condition fails, the instruction follow-
ing the skip is executed. This is usually a jump. What if one of the operands is not an
integer? A trap to the appropriate comparison software will be taken. In 2 condition code
architecture, this software (e.g. the floating point compare routine) would have to set the
condition codes to reflect the result. In SOAR, all it must do is return to the next instruction

or the one after that, a simpler and faster operation.
Separating a conditional jump into a conditional skip and unconditional jump does not
impose a significant performance penalty. SOAR jump instructions contain the absolute

3 address of the arget instruction. Because no address computation is required, SOAR elim-

inates the instruction prefetch penalty for jumps (see Fas? Shuffle in Section 3.4). Thus, a

condivonal branch can be simulated in two cycles, one for the skip and one for the jump. .
' The only way to speed up conditional branches would be to add a one cycle PRNAh

compare-and-branch instruction to SOAR. Such an instuction would require the addition

of a separate adder to compute the branch targetr address in parallel with the comparison NN

N operation. Worse, it would only speed up SOAR by 3%, which would not justfy the addi- *':'.":I:; '

: tionsal hardware. (See Section A.2.2.)
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i 32.3. Two-Tone Instructions

(2 A -"I"f.‘l

A tagged architecture that lacks microcode must include instructions that manipulate

3y
ssivs,: ) and inspect tags. Because the Smalltalk system already relies on the compiler to easure sys- %
)
nggz. em integrity, we can allow the compiler to mix instructions that manipulate tags with o R
REMLES Wt
~ instructions that are constrained by tags. Each SOAR instruction contains a bit that either g
3 . s
{;‘_\ enables or disables tag checking. Untagged mode (indicated by 8 % in the assembly j:::'.‘
o fs e
A language) tumns off all tag checking and operates on raw 32-bit data. In untagged mode the .t.':
tag bits are treated as dan, and the complete insguction set can be used to manipulate this Q;
Mh -y
g:} data. Untagged instructions also allow programs written in conventional languages such as -},f-"
WY ; ol
I C and Pascal to run on SOAR. Instead of providing two versions of each instruction, we A
__: could have defined a mode bit in the PSW. This would have been very expensive, increasing -j_'
t‘~) :‘,’
:'._*_: execution time by 16% and memory usage by 19% (Tables A.11 and A.12). :"’
’ -
< o
s . 3.2.4. Tagged Immediate Operands "~ 4
] | X
Q::* SOAR's immediate format has been designed to accommodate tagged data. The 3]
L] ..\.(-
: high-order four bits of the 12-bit field becomes the tag bits of the operand, the low order %
Ao seven bits of the immediate field form the low order seven bits of the operand, and the eighth ; ;
~ 30,
o bit is sign-extended to fill in the bits in the middle (see Figure 3.2). Thus, any tagged value ’ﬁ; ¢
5 RN
. '_‘: between -128 and 127 can be represented as shown in Table 3.1. This saves time by allow- ,‘j'&_
A\ ing the Smalltalk-80 software to encode some important tagged values as immediate -f-,)
P, :: ”
“’E operands. Of course, there is no such thing as a free lunch. Reserving four tag bits severely ,..‘"
o,
. curtails the range of addresses and offsets from -2048-2047 to -128-127. However, this g
:‘A representation optimizes the more frequent case and improves performance by 10% (Tabie E:
y %: Sy
~$ A.15). g \f
h'\ ‘ |'
¢
h) -I'.'
NN
h"l~ y
-
N~

. 3 - - o > o - .
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Figure 3.2: SOAR's immediate formar. A 12-bit immediate format accommodates tagged

32-bit expanded immediate operand

data by propagating the four most-significant-bits and sign-extending the next ope.

" Table 3.1: Useful inmediate values.

Immediate Field ! Expands to Represents
from o : from to from )
-bit Integers
F80  FFF  FFFFFF80 FFFFERFF | -128 -1
|_000 07F 00000000 __0000007F 0 127
31-bit Integers .
780 7FF ' TFFFFF80 JTFFFFFFF | -128 -1
000 O7F . 00000000  0000007F 0 127 |
- Poinsers to Freguently Re?erenc'ed?bjeas
{includes nil, true, and faise)
BO0 __BJF | B00D0000 _ BOODOOTF |
Values for Testing Tags of Pointers
800 , 80000000 assistant generation
900 90000000 associate generation
AQ0 A0000000 full generation
B0O . B0000000 emeritus generation
F00 ! F0000000 activation record

33. Interpretation

The Smalltalk-80 system is defined by a stack-oriented virtual machine that is based on
the Dorado Smalltalk-80 implementation {Deu83a). Each instruction is comprised of one to

three bytes and generally corresponds to a token of the source program. These instructions

are usually called byrecodes. Bytecodes have the following advantages:

» The simple correspondence between source and object code simplifies the compiler and

debugger.
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e Smalltalk can be transported to a new machine by writing only the virtual machine emula-

tor.
This approach has drawbacks too:

. Decoding such dense instructions takes either substantial hardware or subsmantial time.
For example, the Dorado Instruction Fetch Unit consumes 20% of the CPU [Pie83), and in
Berkeley Smalltalk, decoding a simple bytecode takes twice as long as executing it.

* Some of the high-level instructions require many microcycles to execute. These muldcy-

cle instructions must be sequenced by a dedicated control unit.

33.1. Reduced Instruction Set

Following the reduced instruction set approach, we abandoned the Smalltalk virtual
machine instruction set, and designed the SOAR instructio~ set from scratch to minimize the
time and hardware needed to decode and execute insouctions. SOAR instructions therefore
resemble microinstructions. Aldx‘;ugh such an instruction set results in larger object code,
we believe that the cost of 500 KB of additional main memory is offset by an approximate
doubling in speed.

Each SOAR instruction occupies a 32-bit word, and most instructions take one cycle.
The only exceptions are loads, stores, and returns, which take two cycles. The uniform
length and duration of instructions simplify instructon prefewch. Figure 3.3 shows instruc-

tion formats.

SOAR departs from RISC II by omirming byte-addressing. Instead, separate instuc-
tions insert or exmact bytes from words. Unlike systems for other languages such as C,
Smalltalk-80 sysiems do not support scalar data types that occupy a single byte. (The sys-
tem software uses bytes to pack fields into the Qb_iect header.) Processors with
byte-addressing incur a tme penalty due to the alignment logic. Even if no penalty

occurred, adding byte addressing would only improve performance by 7% (Table A.17). On
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Figure 3.3: SOAR's instruction formars. All instructions are tagged as integers to simplify
storage reclamation. Jumps and calls contain a bit to enable process switches, a one bit op-
code, and the absolute address of the target. Other instructions contain a bit to enable tag
checking (%), a six-bit opcode, the destination register (or condition specification for skips
and traps), a source register, and either another source register or an immediate field. Store
insgructions need two source registers plus an immediate value. In order to avoid delays
caused by multiplexing the source register decoders, the store instruction format moves the
high-order bits of the immediate operand to the destnation register field.

the other hand, the byte insert and exwact instructions are critical—without them SOAR
would be 33% slower.

SOAR follows RISC II in using register-based expression evaluation instead of the
stack model defined by the Smalltalk Virtual Machine. Table 3.2 shows our instruction set.
The loadc and sll instructions have been cloned from load and add, respectively. Loadc is

identical to load, but is used by the compiler only to load the type (class) of an object into r6.

AT et m c AT " e st a T AT e, Tav.™ ~ - et e ¥4 a"a L P A O o e AR U S S S e
'._%::\4‘\. vr..r\z,.z._.' R RSP - LA R SR i S S T ..: .

O
B IS

»
LY

RS
AR
A AN
AT

™
h Y
5

!
+

<7
.p i

j-::\.i'v
AYASLS,
2o i Y

‘o ing

PR As
4

Xy

7.2

2
~

Ll
’

,
RN

:l
Aol
SR

MIER

AN
N

. f ‘l.~..l

l\Q -. -l‘l...'-l
PR A A%
PN
XX

BRI
'.-.’\4_&;..{;11‘

AN
A
P

& .
AN 0
Py 4 l'. !

¥ AL
2

-

-\ -\ !. |
DS
..\.-.".
RSN
. -.' 1.‘ -
et
RSAN



——— 5
s 2%
p .
] T
M ) -1' ,
n Table 3.2: SOAR Instruction Set. s
i opcode Insmuction Operands Cycles Operation -
<28:23>, ©o
g 10-17  [%)ret{w][i)[n] s, const 2 Pc & 13 + conmt N -
! Options as part of return: .,:;.:;
[%] Disables return sddress e
tag checking (non-LIFO a1.) L
g [w] Change register window R
X (i) Enable Interrupts N
¥ [0) Isitialize 18, ..., r13 3';75
v 50 [%)add rs.s2,rd 1 Mermes2 -:__-:‘.
3 52 [%]sub rs, 82, rd 1 den-2 ]
y 44 [%]xor 15,82, rd 1 rd ¢ ra xors2 =
46 [%)and rs, 82, rd 1 Ners&s2 i
: 47  [%or rs, 52, rd 1 nemis2 RS
o S1  [%)sit rs,d 1 d 13 + 13 (Lot shift) ]
i 40 [%)srd rs, rd 1 1d ¢~ 13 shift right logical 1 bit ol
£ 42 [%lsn rs, rd 1 1d ¢~ 18 shift right arithmetic 1 bit %}x
. 56 (%)insert 1S, 52, rd 1 M0 T
P by $2<1:0> of 1d ¢ rs<T:0> "
~ 54 [%]extract 1S, 82, rd | 1d<7:0> ¢ byte 52<1:0> of 15 9895
‘ rd<31:8> « 0 t-:‘::r_
I 34  [%]load (rs)s2, rd 2 rd « Mirs + 52] o0
" 35 loadct (rs)s2, rd 2 M M(rs + 52} A
i 36 %loadm (rs)s2, rd 2-9 tn-2364 ; 4
~ Repeat R(x] « M(t]: :._x: '_
N X3~ tet-s2; N
i until x < 0. SN
t:' 30 [%]store rs2, (rs)const 2 Miss + const) & 132 -Z:}f:'.
" 32  %storem rs2, (rs)const 2-9 t ¢ r3 - COnSL, X & $2; .
‘ Repeat M[t] « R[x}; =)
v Xex=1; tet—comt; e
v untilx <0. :-':_ !
4 20 (%]skip condrs, s2 2 if cond(rs. 2) pe « pe + 2 PN
~ 21-27  [%)wap condrs,s2  1-3  ifcondin,12)17 e, DR
t.' pc & Trap T
o 04 nop do pothing e
N 05 (intenal trap) see [Pen85b) ;»:}.
! 06  (internal skip) see (Pen85b) s
N 60~67  (internal loadi) sec (Peo8iSb) N
! 70-77  (internal storei) sce [PenlSb) -~
3 00-37  [%)call addr 1 7 e po: e
, PC & addr, cwp ¢ cwp - | AR
:.5:: 40-77  [%]jump addr 1 pc  addr ORI
23 ' o
L2 ' By
;5 + Separate opcode needed for trap handler. ::-.:,-.
4 o
) <o
;5_2 RS
% IR
' . \'.~‘
B A A R e S S i S S
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If the object is a tagged integer, its type must be supplied by a trap handier. Dedicating an

opcode to this function saves time in the trap handler. Likewise the sl instruction allows a

~

tag trap to be treated differently according to whether addition or shifting was intended.
Neidwr of these cloned instructions is very important. The loadc instruction realizes only a

0.5% performance improvement (Table A.18). We believe that the sll instruction would not

”~

%

improve performance much either. Since the compiler used for these studies did not go to

Rl N W -
PN BARAOAL, P ERR e o

Ky
the trouble to generate it, we could not measure the frequency of this instruction. g‘i
b 2o
22 Two glaring omissions from SOAR are a barre! shifter for single-cycle, multiple-bit 825
5 shifts and support for integer multiplication and division. Although multiple-bit shifts may Ty
EZ. be important for driving the bitmapped display, they would speed up normal Smalltalk-80 j :
EL: -» programs by less than 0.4% (Table A.19). Likewise, instantaneous multiplication and divi- *

e
s,

sion would shave only 3% off of our benchmark times (Table A.20).
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-
AR
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One drawback of SOAR's reduced instruction set is the increased time for compilation.

Bush has written a converter in Smallalk that translates bytecodes to SOAR instructions

[Bus8S]. He reports that, running on a Dorado, the mean time to conver a subroutine is 50 v

ms, and that ‘‘Subjectively, the converter does not intrude on interactive system use. . .’

1
P

The extra time needed to compile to SOAR instructions does not seem to pose a problem.

")
AL

Ny

XD

More significantly, SOAR’s simple instruction set enlarges compiled code. Experi-

'Y

AN
)

X

ence with Hilfinger's Slapdash SOAR compiler suggests that on the average, one bytecode

results in one 32-bit SOAR instruction. Thus. ignoring data objects. object headers, and

literal data within subroutines, there is a fourfold code expansion. However, bytecodes con-

stitute only about one eighth of a 32-bit Smalltalk-80 image, and the net increase is only 0.5

MB over the original 1 MB. This is not an exorbimnt price to pay given current memory

technology.



Other compiled Smalltalk-80 systems also pay this price. The Xerox 68010 system
devotes 0.25 MB 1o a cache of compiled code [DeS84). Deutsch reports that one bytcode
results in six bytes of MC68010 instructions, which is worse than the factor of 4 for SOAR
[DeusS]). This means that if it were to compile all of the code, as the SOAR system does,
the Xerox 68010 system would need 0.7 MB (Table 3.3).

LS

Finally, our decision to abandon bytecodes will force us to rewrite the Smalitalk-80

Vodas s
XX XA

debugger. Lee has designed a debugger for SOAR and has built a prototype in Berkeley
Smallalk [Lee84). He exploited the hardware organization of SOAR in the design of the

debugger to add a conditional breakpoint facility and increase execution speed during

NN

AT NN

debugging.

AN
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332. SOAR Interrupts and Traps

Y,
1 - 3

o

Interrupts and traps play a larger role in SOAR than in RISC II. Unlike C, Smalltalk

X,

grew in an environment with extensive, system-specific microcode. Since SOAR has no

L]

39

ANRILT S

microcode, unusual situations must be met with a trap to a software handler. For example,

AR
d":’.i A

as described above, other Smalltalk implementations check the types of arithmetic operands

hY

[ AN

»

sequentially, before performing the operaton. SOAR checks in parallel], fnpping if the

operands are not simple integers. These account for about half of the traps (Table A.2S5).

T o . = -
Iy ity
AR

How valuable are conditional trap instructions? They save time and space by replacing

“‘Al{'

R

l' ’

a two-cycle two-instruction sequence with one single-cycle instruction. For instance, the

Sy

>
LN Ry

prologue in each subroutine uses a conditional trap instruction that verifies the type of its

Table 3.3: ngﬁ’enﬂtg of Compilation.
ystem execution model code expansion ratio  memory required*
Berkeley Smalltalk  bytecode interpreter 1.0MB
Xerox 68010 cache of compiled code 1.3MB
SOAR : compiles everything 1.5MB
hypothetical 68010  compiles everything 1.7MB

[

s

* excluding wranswent objects.
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b) first argument. This saves a cycle over a skip and branch in the common case. Trap instruc-

P« tions also support type checking in low-level primitive routines, and tag checking for

automatic storage reclamation. However, if the trap instruction traps, it takes more time to

handle the trap than the jump from a skip-and-jump sequence. In fact, trap instructions

e e ey

. account for 10% of the traps (Table A.25). Despite all these uses, the savings from trap

E ot

Y instructions does not add up to much; SOAR would run only 4% slower and require only 2% o
h* ¢ ""::
! more memory without them (Tables A.23 and A.24). The fact that rap insguctions save lit- f-_‘;

s -r.'_.: Y

tle time results more from the low frequency of trap instructions than from the penalty asso-
ciated with taking the traps.

The remaining source of traps also arises in RISC II. A call or return that exceeds the

W M N

W on-chip register window capacity must trap 0 a routine to save or restore a set of registers.

This accounts for the remaining 40% of the traps (Table A.25).

\ ofiebiece

To reduce the cost of trapping, SOAR exploits shadow registers that catch the
operands of the trapping instruction. These are inexpensive in single-chip processors; they
are just two more registers on the data busses near the ALU. This feature is insignificant;
without it, SOAR would run only 0.04% slower and require no more memory (Table A.26).
Other features that simplify trap handling include simple instuctions and uniform instruc-

Cod S A B AL Rp Y

SOAR does not support nested interrupts or traps because they complicate the architec-
) ture. The interrupt-cnable bit in the PSW (Figure 3.4) is reset upon an interrupt or trap.
Each wap handier first captures any necessary machine state. then re-enables interrupts.
Most handlers need their own register window to hold this state. The normal method to
obwin & new register window would be t:) execute a call instruction but, since a call can
cause a trap (see above), the trap handler must simulate the call (and trap). After getting a
d ‘ pew window and saving the machine state, the handler can re-enable interrupts (and option-

ally surrender its register window) with a form of the return instruction.
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Figure 3.4: SOAR Program Status Word. The SOAR program stats word contains a desti- o
A\ Dation register shadow field, an opcode shadow field, and enable bits for external and ho
R.* ’ software interrupes. :.::..«
N 5
Sg When an interrupt or trap occurs, the instruction that is executing is aborted before it R
W
’ can change any registers. The address of the aborted instruction is saved in r7. VO inter- —.—',;_-j
- LY
. :)-,:J
..-:_ rupts are disabled by clearing the interrupt enable bit in the PSW. This freezes the shadow N:;j
<1
"{ registers, which normally track the ALU inputs. A vector is constructed from the trap base :}“f
. register, the opcode of the aborted instruction, and the reason for the trap. Finally, conrol is 5y
WA N
é:; transferred to the vectored location. Table 3.4 lists the various categories of traps, with Lo
.'f 2 “ \'
NN interrupt priority listed from highest to lowest. RY
~ ) “".‘
:.j- Many instructions can trap for several reasons at once. To simplify the interface to the .,i.;
Y N
:_.j: trap handler code, the reasons are prioritized. After handling a trap, the offending instruc- ‘z‘jz.j
s I\
N tion is typically reexecuted to spring any remaining traps. Table 3.5 shows which reasons ¥
g%
90 - \.:.‘_
254 Tabie 3.4: SOAR traps and interrupts. i
} 04 Name Vector  Pri Class - Explanation "\‘
] Illegal Opcode (ILL) 0 A " 1<31>=] or 1<28:23> = unused i
_— Tag Trap (TT) 1 B | Ses [SKF85]. e
" Software Interrupt (SWI) 2 B | 130:29> = 01 and psw<S> = | s
e Window Overflow (WO) 3 C i 1= call and cwp<6:4> - 1 = sWp<6:4> ‘:::::'
Al Window Underflow (WU) 4 (of ' 1= ret and cwp<6:4> + | w sWp<6:4> e
. Data Page Fault (DPF) s C . page fault pin asserted during :}:::
‘N | dats memOTy ACCess i
Trap Instruction (TT) 6 C ] » trap instruction & condition is true “ng
< Generation Scavenging (GS) 7 D See [SKF8S). =
’ : Inszuction Page Fauit (IPF) 8 E page fault pin asserted during o
N B J-fetch of next instruction e
N Inputv/Output (10) 9 F VO interrupt pio asserted during =
W] J-fetch of pext instruction ‘ ::-.j
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apply to which instructions. If instead of vectoring, SOAR put the reason for the trap in a
special register the system would be only 3% slower (Table A.28).

When SOAR does trap, it expends two extra cycles to flush the pipeline. A one<cycle
trap, while feasible, would have significantly degraded the cycle time [Pen85b). Since the
extra trap cycle increased the number of cycles by less than one percent, the net result was a

faster system.

3.4. Fast Calls

The Smalltalk-80 system stresses program modularity, but omits macros because they
would make it harder to incorporate changes quickly. If the user changed a macro, the sys-
em would have to recompile all of the modules that instantiated it This would make it
more difficult to maintain the split-second response time that is crucial to highly productive
programming. Instead, Smalltalk-80 programs are broken up into many small subroutines.
Consequently, Smallalk-80 sysiems execute a higher perceatage of call instructions than

most other systems. In addition to being frequent, calls are also expensive because:
¢ To aid program debugging, Smalltalk-80 initializes all local variables on each call.

* A consequence of Smalltalk-80's power is that the destination of a call is recomputed

from the type of the first argument, with a table lookup each time the call is executed. '

Table 3.5: Trap reasons by instruction ca .
A B
Call ILL SWI wO IPF
Jump L Swl - IPF
Remwm | ILL WU GS IPF
ALU ILL TT IPF
Skip ILL TT IPF
Trap ILL TT Tl IPF
Shift ILL TT IPF
Load oL TT DPF IPF
Store ILL TT DPF GS IPF
Byte ILL IPF

----------------
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2 The result is that many Smalltalk implemenatons (including Berkeley Smalltalk and "::1’
\
X Dorado Smalltalk) spend about half of their time on calls and remmns [Deusl]. SOAR o
13
N reduces the Smallalk call/return overhead in several ways.
08 B ]
¥
of 3.4.1. Muitiple Overlapping On-Chip Register Windows d
AW P
; SOAR, like RISC I, optimizes subroutine calls and remms by providing a large, E.r
2:' on-chip register file. The registers are divided up into overlapping windows. Instead of sav- E?
’ ing or restoring registers, calls or returns merely switch windows (Figure 3.5). Compared to -
N g
3 -;,I;: C language subroutines, the shorter Smalltalk subroutines pass fewer operands and use fewer ;'.t;
) [
: EE local variables, and so need fewer registers. For this reason. each SOAR register window Ej
W N

has eight registers instead of 12 for RISC 1. Figures 3.6 and 3.7 show the register organiza-

tion of SOAR. In addition to 56 more registers, the inclusion of register windows results in

%
£,
e n e
ey

.

o the addition of a register to select the current window (the Current Window Pointer, or cwp),

2

a register to detect overflows by recording the last saved window (Saved Window Pointer, or

1 ° .
é- swp). more elaborate register decoders, and trapping logic [Pen85b]. Despite the cost of all ‘;:.
RS, .
;«t the added hardware, Smalltalk-80's predilection for procedure calls makes this feature very :I&
A ;u
- important. The cost of saving and restoring a conventional register file would slow the oM
- . machine down by 46%, even with load- and store-multiple instructions (Table A.29). {:w{
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Physical Registers  Logical Registers

GLOBAL

SPECIAL

HIGH

LOW

handlers.

R31

R24
R23

R16
R15

R8
R7

RO

R31-A R31-B R31-C
Globals
R24-A R24-B R24-C
R23-A R23-B R23-C
Specials
R16-A R16-B R16-C
o
o
®)
RIS-A
HIGH-A
R8-A
R7-A RI5-B
LOW-A/HIGH-B
RO-A R8-B
R7-B R1S-C
LOW-B/HIGH-C
RO-B R8-C
R?-C
Low-c
RO-C. -

Figure 3.6: SOAR's register windows. Like RISC I, SOAR has many physical sets of re-
gisters that map to the logical registers seen by each subroutine.

Figure 3.7: Logical view of register file. The HIGHs hold incoming parameters and local
variables. The LOWj are for outgoing arguments. The SPECIALs include the PSW and a
register that always contains zero. The GLOBALSs are for system software such as trap
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{ v
w When the number of activations oo the stack exceeds the on-chip register capacity. ‘,'“2
..3. Y L/ {
' SOAR traps to a software routine that saves the contents of a set of registers in memory. =t
. LA
A Unlike RISC 11, SOAR has load- and store-multiple instructions to speed register saving and ooy
" v,
) <o
restoring. These instructions can transfer eight registers in nine cycles (one instruction fewch :ﬁ;:-"
4 ' N
, and cight data accesses). Without them, the system would need eight individual instructions -
(.: -'f X
- that would consume sixteen cycles (eight instruction fewches plus eight dam accesses). ';i
ot K
. ’ ﬂ .
; Load- and store-multiple are also helpful for garbage collection, copying data. and opera- ;::
[ )
" tions on bit-mapped images. These instructions hsve the ability to operawe on —-:
~ Yo w
- s
? j, non-contiguous data; the increment between memory references is given by the SOURCE2 fx:Z:::
9
~o field. In retrospect, these multi-Cycle instructions added some complexity to the design, and E;.
e . PERY
4 the benefits — 3% of execution time and 2% of memory — may not be worth the costs ;,\-5:
Y R
Y (Tables A.33 and A.34). o
19 s
™ -
5
~ . 3.4.2. Caching Call Targets In Line L
o s
*: Another way SOAR reduces subroutine overhead is by decreasing the time taken to \::".::
o
find the target of a call. Once computed, the trget's address is cached in the instruction SEEE
._ stream for subsequent use, as suggested by Schiffman and Deutsch (DeS84]. Figures 3.8 ,:,J
02 o
o and 3.9 illustrate this idea. This in-line caching exacts a price for its time savings; SOAR S
rrs el
99 - must supporn non-reentrant code. Since all Smalltalk processes share the same address space. '_-E:j
e process switches must be avoided in sections of code that modify or use the cached data. ";1
s oA
th One approach would be to implement semaphores in software. This would be too expensive \:"..:
A2 because each Smalitalk call edecutes a short non-reentrant section of code. The approach we -}f.;
X followed was to add a bit to each insguction to disable process switches. &
[y A
A - 2o
R In Smallalk, calls and jumps are so frequent that the virtual machine can defer a pro- I,
N cess switch until executing the next call or jump inswruction. The SOAR call and jump p :5::
5'5'_ ' instructions include a bit to specify when it is safe to switch processes [Deu82b). This bit :::::
X R
854 N
iYe X
o

%
22 2 »
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enables a sofrware interrupt. When the operating system desires a process switch, it sets a
bit in the Program Stams Word requesting the software interrupt and resumes execution of
the same process. The next time a safe jump or call is executed, the software interrupt

transfers control to the operating system which can then safely suspend the process.

Although complicated, in-line caching pays bandsome rewards. The conventional way
to cache call targets is a hash table. But the overhead for probing into a hash table would
slow SOAR by 33% (Table A.37). The hardware penalty for in-line caching is the software.
trap mechanism. If we were forced to omit this, we could use an indirect in-line cache. The
informations could be cached in a per-process dat area instead of the call instruction. This

would slow SOAR down by 7% (Table A.37). Even with in-line caching, SOAR still spends

BEFORE
‘:- o
[—— o
String d
° “print’ | 1000 -
° :
aSuing °
entry table for Strings
(]
e . 1000 -
—> 16« aSuing °
call lookup g
.lm" g
-] ]
-] ©
o
calling code string print routine

Figure 3.8: Caching the 1arger address in the instruction siream. In this example. the print
routie is called with an argument that is a sering. (The argument is passed in 16.) The first
time the call instruction is executed. the call comains the address of a lookup routine and the
word after the call contains a pointer to the name *‘priot.’’ The lookup routine follows the
pointers to the entry table for strings. and finds the entry for ‘‘print.’’ It then overwrites the
call instruction with a call to that routine and replaces the word after the call with the type
of the argument (string).
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String t,:w
° b '2
° =
(-] ‘:_:‘."
aString MY,
: — . i
o lm d eck W ~, ot -
- : of argument |} =
76 + aString o .%'& )
call 1000 o -,,\ R
‘.m" g E:’:\
o e R
° S Oyt
calling code string print routine ""‘
Figure 3.9: Caching the 1arget address in the instruction stream. The pext time the call is :'._-,':3"-
executed, control goes directly to the string print routine. A prologue checks that the SN
currem argument’s type matches the contents of the word following the call ipstruction. o d
This word contains the type that the argument had the previous time the cail was executed. ' o
If the types match, control falls through to the string print routine, otherwise another table e
lookup is beeded. o
. (%%
~
11% of its time in cache probes and another 12% handling misses. Further research into ;%J-
13
computing the target of the call could yield substantial savings. v
%
3.43. Fast Shuffie: One Cycle Calls and Jumps -:‘:‘ A
o
’% ‘-. {
Finally, the call instruction itself has been designed for rapid execution. In most archi- fa 4
fa: tectures, a call requires an address computation (typically the addition of an offset to a base :;::
«’y WY e
) N
2 register). This forces the call to take an extra cycle because its target cannot be prefetched. :-;- a
LYy
A "0
- In SOAR, the call instruction contains the absolute address of its destination. Furthermore, a ;'
call (or jump) can be recognized easily by examining only one bit. This makes it possible t o
. '.:- '
detect these instructions in time to send the incoming data back to the memory as an address. RS
‘__;-" {
This way, a call or jump on SOAR executes at full speed requiring only one cycle. This e
-‘."f
**Fast Shuffie” mechanism combines on-chip logic to detect calls and jumps with and an ';.‘:
e
-\\
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off-chip latch to store the incoming instruction and send it back to memory. Figure 3.10
illustrates the Fast Shuffie logic. Though not spectacular, its performance impact is

significant. SOAR would use 11% more cycles without the Fast Shuffie.

Pendleton has uncovered a serious flaw in our realization of the Fast Shuffle [Pen85a).
Xd ¢ When a jump or call instruction follows a skip, the skip condition must be evaluated before
the chip can signal a Fast Shuffie to the memory system. If the condition holds, the memory
system must use the PC as the address of the next instruction; if the conditon fails the
memory system must use the target field from the jump or call instruction. In designing the
instruction set, we encoded the condition field (of skip and trap) so tightly that a PLA was
required to decode the condition and the output of the ALU. This PLA adds 110 ns to the
time needed to compute the Fast Shuffie control signal during a skip instruction. Although
the NMOS SOAR chips can execute an instruction in 400 ns, the memory system can not
staart the next instruction fetch for another 100 ns. reducing the effective cycle time to about
510 ns. This overhead could be eliminated by foregoing the Fast Shuﬂie and using delayed
branches and calls. Alternatively, the instuction set could be redesigned with a condition
field that could be decoded more quickly. This problem wouild have been found mﬁch ear-

lier if we had simulated the whole system inswead of the processor.

3.4.4. The Return Instruction: Parallel Register Initialization

The other half of the team is the return instruction. In SOAR, the return instruction
performs one compulsory and three optional functions, specified by the low-order three
opcode bits. The compulsory function is a transfer of control, which means that the
bare-bones return instruction can be used as an indirect jump. If tag checking is enabled. the
tag of the return address is checked. This provides a means to intercept returns when the
activation record must be saved. The first optional function enables interrupts and yields a

“‘retwrn from interrupt’’ instructon. The second optional function increments the cwp

I

- e ol WA
5
TN T LS &N

!f.(..r.:‘:_‘;
I AR A
."\'\-".‘-'

W P2 XA
- (]
(22

s
afefe
L 4

. ?
.
-

AR




Ny
o
L

N o
49 -
7
XY
R,
(AN
p . ol
i S0AR cip .
-. :\ ‘
. 'y
; Chmstines o2 > N
fi 1 ¥
l<3°> ow ) L)
X t e
R RS
.’ Fa i
N R
. gddms out m TR
N RN
b 7
):' -,}':,7
- fast shuffie cootrol 23
, > i
b Figure 3.10: Fast Shuffle logic. Whe a call or jump is fetched from memory, the pext in- ;l’;
z struction is prefetched based on the external address latch instead of the PC. el
BAY
- :!*-_.
i (changing register windows) for returning from a normal call. ;.i;' ‘:
_ -
- The Smalltalk-80 language requires local variables to be initialized to nil, so the last I
St » '
2 TE)
E: optional function for SOAR’s return instruction prepares registers 8 through 13 for a future N ::
~ A
.' call by writdng nil into them. Instead of commencing each subroutine with an instuction i
o ?J_jq >
;: sequence to write nil into each register that will contain a local variable, SOAR exploits -H:
& 5
‘ VLSI circuitry to initialize the registers in parallel. Although it would be more straightfor- ::';n
] '*
) ward for the call instruction to perform this initialization, this would slow down the call. \ -
> w
N Insiead. we have placed this functionality in the rerurn instruction. Since the remm instruc- N2
'\' l“ -\
v, LYRS
S tion must wait an extra cycle to fewch its mrget instuction, the *‘nilling’’ does not slow the SR
ls-. g Y
). instruction down. This feature eliminates the extra time required to initialize the registers 2 $ .
e >\
fg after every call. bronically, Smalltalk-80 subroutines use so few temporary variables — less f{:\
2 Oy 3
:“ *& \ !
::'_. than one on the average — that this feature has litle favorable impact. The system would & ]
2 «

:

only run 4.3% slower and use 1% more memory without it.
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3.5. Object-Oriented Storage Management

SMleJO data structures are called objects. SOAR objects average 14 words in
length and live for about SO0 instructions. Smalltalk-80 objects are smaller and more vola-
tile than data structures in most other exploratory programming environments. Smalltalk-80
systems face three challenges in managing storage for objects:

» Awtomatic storage reclamation — On average, 12 words of data are freed and must be

reclaimed per 100 Smalltalk-80 virtual machine bytecodes executed.
* Virtual memory — All objects must be in the same address space.

o Object-relarive addressing — Although offsets into objects are known at compile-time,
base addresses are not. Code must be compiled to address fields relative to dynamically
determined base addresses.

3.5.1. Automatic Storage Reclamation

SOAR suppc;m Generation Scavenging to reclaim storage efficiently without requiring
costly indirection or reference counting (see Section 5.8). This algorithm is based on the
observation that most objects either die young or live forever. Thus, objects are placed into
two generations and only new objects are reclaimed. A better method of storage reclamation
has a strong impact on performance; most other algorithms would squander 10% to 15% of
SOAR'’s time on automatic storage reclamation instead of Generation Scavenging's 3%.
(see Chapter 5). Hence, without Generation Scavenging SOAR would take 4% to 15% more

cycles to run the benchmarks.

Traditional software and microcode implementations of object-oriented systems rely
on an object address table (Figure 3.11). Each field of an object contains an index into this
table. and the tabie entry contains the address of each object. The level of indirection sup-
plied by the table provides support for compaction. As explained in Chapter S, Generation

Scavenging provides compaction for free. permitting SOAR to function without an object
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ble (Figure 3.12). Without this algorithm, the extra work to follow the indirect pointers

through the object table would slow SOAR down by 20% (Section 5.9.4).

Generation Scavenging requires that a list be updated whenever a pointer to a new
object is stored in an old object. When designing SOAR, we thought that stores would be
frequent enough to warrant hardware suppor for this check. Thus SOAR wags each pointer

with the generation of the object that it points to. While computing the memory address, the

store instruction compare.s the generation tag of the data being stored with the generation tag

21|
-.ﬁ‘

.
b)

A

BEFORE

provues
Y MNNN

Object Table

ref

Object 1 Object 2
count

table index St table index
table index - couint table index
table index | oSGt ) wable index
table index St table index

__cfim

Figure 3.11: Indirect addressing. 1n traditional Smalitalk-80 systems, each pointer is really
a table index. The table entry coutains the target’s reference count and memory address.
This indirection required previous Smaliltalk-80 systems to dedicate base registers to fre-
quently accessed objects. The overhead to update these registers slowed each procedure
call and return.

e

i P AP
" T [ -.-“. :.

Figure 3.12: Direcr addressing. A SOAR pointer contain the virtual address of the target
object. This is the fastest way to follow pointers.
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of the memory address (Figure 3.13). For 96% of the stores, list update is unnecessary and '.'\-','.'*-’_E

A Ad
;:;.

the store completes without trapping (Table A.52). Once again we rely on tags to confirm
the normal case and trap in the unusual case. Surprisingly. tagged stores are so infrequent N
lh;t hardware support saves only 1% of the time and 3% of memory over an explicit check

(Tables A.49 and A.51). This featre does not seem to worth the effort. ’ D
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Figure 3.13: Generarion tag checking in parallel with a store operarion. The first check (=
1111) is for contexts and is explained in Section 3.5.2.
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o 3.52. Activation Records as Objects
&v

Smalltalk-80 activation records pose a special problem. Since each call needs a new

Y
N
-~
" EI I".I.'-

)

%

1 activation record, they must be easy to create. Because local variables reside in them, at

- r
by

5
[ g
R
k‘.

" least the current activation record must be easy to access. For these reasons, Lt

bigh-performance systems for other languages allocate activaton records on a stack, and

P d
2 2
; keep the active activation record in registers. The problem for Smalltalk-80 systems arises _;'_::,fé
B 'Y . N . . . :'N\‘-.
:=| because the language specifies that the format and lifetime of an activation record shall be ;‘:;‘_1
the same as any other object. In other words, a Smalltalk-80 activation record must be —
e . %}a:
o stored in memory with a smandard object header. Worse, an activation record cannot be deal- e
*‘\ l...-:: )
4,:". located until the last reference to it is destroyed — even after control returns from it. :'.5}%
b sl
2 SOAR caches activation records in an on-chip register file for speed, backed with an :\"\.
O J:_
'-:.‘; overflow stack in memory. Pointers to activation recorde are rare, so SOAR's hardware &\E
Y )
. merely detects these and causes a rap at the appropriate time. The first trap occurs when a R

b} N
w

reference to an activation record is created. Pointers to activation records have all the tag

o~
. Imd o
3 bits set. When such a word is stored into memory, the tag check causes a trap. At the time ;-.-;:..:
2 -f':?.'g
Vi of the trap, the high order bit of the activation record’s return address is set. Setting this bit Tal
-1
' X indicates that the activation record may outlive its parent. Since these records are normally ‘.‘QSH‘
. h*}
> !
> allocated and freed last-in-first-out (LIFO), we label such anomalously long-lived activation ;‘i X
» N
L records as non-LIFO. The return instruction then traps if the return address has the high i
*l
N order bit set — this lets software save this activaton record in the heap.
\ L
A
.
::3;- What if & program references an activaton record while it is still on the stack? First, N
SOAR leaves small gaps between activation records when they are stored in main memory. e |
o N
. by
e These gaps are initalized with object headers to permit the stored activation records to ~j.'::.'
- fﬁ .*\ -l
L, e
< behave as objects. Second. SOAR's hardware provides pointer-to-register addressing. Each ;?: 3
¥ (a
" load and store checks if the target address resides in the on-chip register file. If so, the chip :—;
» s
I substitutes a register access for a memory access. This mechanism makes it possible o '.r-‘_:.-'_
. e
- .
3 35
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access on-chip activation records as if they were in memory.

Since designing SOAR, we have come up with a software solution to the
pointer-to-register problem. This scheme eliminates the comparitor and complicated control
logic incurring only a 3% performance penalty (Table A53). The key idea is to generate
iilegal addresses for the unpredictable but uncommon activation record references, and to
guarantee that the common and predictably referenced activation records reside in memory

when needed (Section AS.3).

3.53. Virtual Memory

The SOAR system will include disk storage and thus supports virrual memory. Sec-
tion 5.4 explains our choice of demand paging over segmentation. SOAR therefore includes
a pin to request a page fault interrupt. The uniform size and lack of side-effects of SOAR’s

instructions simplify page fault recovery.

3.6. Implementation

In this section, we give a brief description of SOAR's implementation and microarchi-
wecture. This is covered in more detail in Pendleton’s dissertation [Pen85b). The casual
reader may want to skip this section; those interested in details may want to read on and
leam about the data path required for SOAR’s instruction set. Although simpler than many
other computers, SOAR's implementation is substantially more compiex than its predeces-

sor, RISC II.

3.6.1. Special Registers

SOAR has eight special-purpose registers that simplify the instruction set and help
with interrupt bandling (Tables 3.6 and 3.7). For instance, a register that always contains

zero permits the assembler to synthesize moves with add instructions. Making the program

counter available as a register provides relative addressing without adding another address-

Ty
LN §

PR PR}
PO

&

’l
20

2.

Y
4




e

o2 pA

£

S

S~ >
-

e

Bl =

Y o e
]

&

oA b
AN

»

o
-F\ .."

U O " SN 2 N "Rl

55

ing mode. However, supporting unrestricted use of these registers would complicate SOAR.
Three restrictions apply to these registers:

e A result written to a special register does not take effect until the end of the next

- instruction. The SOAR microengine cannot forward special registers.

e A special register cannot appear as the destination of a load instruction.

* A special register cannot appear in the SOURCE2 field of an instruction.

b Table 3.6: SOAR isters.
[Name —— Symbol | Reg._Bits | Contenss
. 12810 rl6 : 31:0 Always = 0. For synthesizing instructions.
program | pc rl?7 : 27:0 | address of pext For instruction fetching,
counter : ipstnaction PC-relative sddressing,
and case statement indirect
jump (ret). Should ot
be modified directly. but
; only with jump. call, or
P ret{inw}].
Shadow A | sha r19  31:0 | copyof Aimput The shadow registers track
! w0 ALU or shifter instructions executed when
Shadow B | shb ri8 . 310 copy of B input interrupts are casbled and
i i %0 ALU or shifter freeze whea inserrupts are
i ' disabled. Thus. a
i trap-handler can save
’ time by reading operand A
: from the shadow registers [
instead of decoding the Y
offending instruction. Y
Trap tb 121  31:10 | base address of X
Base the intsrrupt and LY
trap vector area segld
Saved swp 20 27:4 memory address of For pointer-to-register :'_:x:. '
Window object header of logic. window-overflow '-?-:'
Pointer the most recemly and -underflow trap logic. :u- ",
saved register window | ang computing address of W
Current cwp r22 64 index of on~chip current actvation record. :'
Window register set serving Cwp controls local register 5
Pointer as bigh window decoders. ot
Processor : psw 123 15:0 | seebelow el
Status f';-,.f
i Word 2ot
i ;:".., ﬂ A
R
N
_'u‘ N
S
)
N
-'-:Lx'jij
X "'::':-‘. N ORNNSAS N y QI ' 3 [l ""' G S G AN A N NN




.--.'—'-'vu»v .n‘ L S ¢ » . S - IIJ
S
{ 56 E—_;f:
[

P '&t— 'J
" N
Table 3.7: Processor Status Word fields. R
{ Name Bits : Contents Notes ﬁ:&"’_
. shadow 4:0 | destination register For trap handlers. ',‘-‘ S
destination field (bits 22:18) RN
of last instruction b
executed with et
interrupts enabled i o
) software 5 When this bit is on For process switching. Y
interrupt and a call or jump )
enable i is executed with et
; bit 29 on, SOAR takes Lo
*_a software trap. e
interrupt 6 . Enables VO interrupts Disabled in imerrupt AR
enable :_and shadow registers. hadiers. b
: i 7 . inent Usused. I_I_::j;:
shadow 15:8 ' opcode field (bits 30:23) | For trap handlers and DAY
opcode " of last instruction trap vector logic. el
E executed with inumps CAVEAT: SOAR does not -::-“‘:;:'
i enabled Suppon besid traps. i
| Traps takeo wheo L
; interrupes are disabled A
) will pot vector to Lt
i proper opcode. A,
'.':“t\"‘w
A
3.6.2. The SOAR Datapath ‘&.\;—4
- ' Ay
; The SOAR dauapath includes a register file, ALU (and byte shifter), the program Qs
PO A
d counter, memory address register, and saved window pointer. When reading, the busses are &‘iﬁ:
X v
first precharged, then two separate registers may be read onto the busses. For writing, a sin- | S
:-’: \l
gle register is addressed, and the data are driven differentially on both busses (Figure 3.14). :ﬁ\::zj
B RSN
A
3.6.3. Pipelining in SOAR RO
S
The cycle time of SOAR has been matched to memory cycle ume. Each instruction is -:.:::.::
one word long and most can execute in one cycle. While one instruction executes. the next "i"g

sl
is prefewched from memory (Figure 3.15). As described above, jumps and calls require no oy
5 address computation and therefore cause no delay in the pipeline. Conditional branches are E'.E;ﬁ:;
g "?
X synthesized with a skip and an unconditional jump. This takes two cycles, which is the same 5'.@{:
9 » ‘f.\ ‘
as a conditional branch would require. -
L0y
ol
PN
.f...“\c
NS
N
bl
e g e o e e e e e L e e e e ST N T S ~.."-:'-';‘fi'




:
)
k)

inst. latch

T
-
o

ﬁf ‘!‘

vy
3] o
> . \
N sign extend .

. “

- »
4 w7
N :.*_‘.
“w L)
o \i\:
i . F r ‘-.' \.
3. i N
N - 9
hin €xt oL
' _J“f =
P reg file ALU e
1%, .
S R
T olgY o
: e
i A
) bl L— v &

2

.o
Syt
-~ i

- Figure 3.14: The SOAR dataparh. *'sha’ and “*shb”* are shadow registers A and B, **byte

:] ins/ext’ is the byte insertion and exwuaction logic, ‘‘dst” is the destnation latch, and _:};
1 **MAL’’ is the memory address Iach. e
aZa
~ cyclei-l1 cyclei cyclei+l 4
D - - X
L e ., . i
oy . -, St
‘% instruction x-1 | execute [write back A
N: .-. .. :'\1
= T : ex
§ instroction x | fetch write back -
' ...' --_. _::...
Iv A -

iostruction x+1

Rl
\\

b
{(
KNI
e,

4

~
-"

2
a /phil  phi2  phi3\ -
! e
decode | rad | ALU& y
2 precharge| reg  |write back :;\
! -
v"" ':.'::
Y Figure 3.15: Pipelining in SOAR. Although an instruction takes three cycles, SOAR can <y
WY execute ope instruction per cycle. Each cycle in turn consists of three phases. N
. {] (,."
= ’r__,
-:E 0

,"'}
.I-

P 4
W

%

v

-

N -

o Gl
g

_\: "‘;

N P R e T N I T e R T e S N O L TN L N LN N L TN RN L KSR SR SN o -'\-"

R O T e e e S T N AENDENINNE TATATRT A ..\! A NN NN J\:'\S‘:'\-'\-'\‘\':\-‘.‘-‘ RO IR

- o W o 3 B - A - ot




e ¢ : 8

The anatomy of SOAR's cycle is determined by the fact that the datapath allows two
.!: . simultaneous precharged reads or one write 1o the register file. Each cycle is divided into
. three nonoverlapping phases. In phase one, SOAR decodes the instruction and precharges
the busses. In phase two, the source registers are read onto the busses. In phase three, the

b, ALU combines the two operands. Simultaneously, the result from the previous instruction is
¥ stored back into its destination register. Thus, the result of instruction i is not actually stored
- into its destination register until the end of instruction i+/. Forwarding logic hides this
R : delay; if instruction i+/ attempts to read the destination register of instruction i, the desired
? \ value is forwarded from a lawch at the output of the ALU. This bas a significant effect on
J performance; if inswead of forwarding, SOAR sualled the pipeline for a cycle the benchmarks
< would run 15% slower (Table A.54).
§ Pendleton has proposed a rearrangement of the pipeline that would shoren SOAR’s
“: cycle time by 25% [Pen85b]. However, the return instruction would be one cyclg longer, for
2 torl of three cycles per rewn instruction. What would be the net effect? On the average,
; SOAR performs 5.4 returns per 100 cycles (Table A.47). Thus, the effect of lengthening the
r)i return insouction would be to execute 5.4% more cycles. Since the new cycle time would
- be 25% faster, the new time to run the benchmarks would be 1.054x75%=79% of the old time.
5';' (See Section 4.1 for a description of the benchmarks.) Rearranging SOAR's pipeline would
: substantially reduce execution time.
Y
: 3.6.4. Implementation Statistics
N Table 3.8 conmins some preliminary data for the NMOS SOAR chip, aken from
7 {Pen85b). These chips were fabricated by MOSIS [MOSIS] and performed faster than the
‘:5 simulators predicted, except for the unforeseen delay for jumps and calls described in Sec-
2;'5 tion 3.4.3. The MOSIS NMOS SOAR chips can execute an insgruction every 400 ns, which
' i must be derated to 510 ns for the jump and call delay. Pendleton has perfected the host
:
"
2
A

s
P T e T a o s T T o A AP AR ION A AP A A AL AT Y ~or
R e VRIS

oo |
(}/_
oy

._
i
v

Y

5
(A X/

v

s
s
7.

70
S i

h'

i}

L
27

Ll
LAV

& 5 0

e~

™
d

.
-
"

""
l;s 2

" %Y LT Py e
21 b'l'-
AP

o



"Table 3.8: NMOS SOAR characteristics. -
[ line width apy
T"size (W/ scribe lines) |
width 10.7 mm ',
height - 8.0mm
wer dissipation ~3 watts :
ly voltage S volts !
wansistors 38,700 g 3e
clocks ' :‘é}
ol %ns 5%
underlap <10ns o0
(%] %0ns | faln
underiap ., <25ms | — ]
i3 ' 14Sms | RN
. underlap . 4Onps | 3%
processor cycle time , <400ns | o
fast shuffic seulingtime | 110ns | :*2d
| minimum system cycle time .  S10bs ol
! actual system cycle time : 800ms R

board for SOAR, and has successfully run the entire diagnostic suite on the SOAR chips.
The best SOAR chip ®swed to date functioned perfectly with the exception of a faulty bit in

one register.
3.7. Summary

In designing SOAR, we have anempted to find a few good ideas to supplement a basic

RISC for Smalltalk. These are listed in Table 3.9. As a result of including all these features,

SOAR is considerably more complicated than RISC II. The next chapter evaluates our
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C7, architecture, and identifies its successes and failures.
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M ¢
1%y S rr—
# Table 3.9: SOAR Architectural 1deas.
" e idea | Secton | From
N 31-bit arithmetic (with tag & overfiow checking) 2 '
. a tagged/untagged mode bit in each instruction 2 ;
N conditional skips 2 PDP-8 |
N immediate values 2 ;
5 compilation to low level instruction set 3 RISCDI |
Ry « uniform length instructions 3 RIscn !
word-addressing w/ byte-insert and -extract 3 MIPS, PDP-10 |
instructions agged as integers 3 !
4 vectored, prioritized interrupts and traps i3 ;
44 shadow registers i3 | ;
_ in-line call wrget cache 4 | Xerox ST-68K |
' software trap oo jumps and traps 4 | j
a one-cycle calls and jumps (fast shuffie) 4 | f o
vy factored return instruction 4 | NEX
< paralle! register initialization on retumn 4 . D
2, load- and store-multiple 4 IBM-360 | s
W multiple overlapping register windows o chip 4 RISCI | )
; poncontiguous load- and store-multiple 4 | ¥
- genenation scavenging s | ! z
> trapping stores of new pointers into old objects s BS |
- trapping stores of activation record pointers 5 | BS | <
< trapping returns from referenced activation records L % N
— pomters to registers 5 | T
) paged viral memory ] Atlas, Sun | P,
s direct object addressing s BS | O
V) special registers 6 RISCT | 892
N pipelined daw path with forwarding 6 RISC II N
Y offline reorganization BS - o4t
tag checking of addresses for load & store | '
- hard-wired instructions RISCHI !
<

._ ,,.‘,
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Performance Evaluation of the SOAR Architecture ey
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4.1. Introduction .

Can a reduced instruction set computer make Smalltalk-80 practical? In this section

«?aTa"a"n
"

-y
Ly,

we evaluate SOAR’s overall performance, place it in context with other Smalltalk-80 sys- N
tems, and examine features in the architecture to see which pull their weight and which are O

just 2 waste of effort. Toward this end, we have analyzed running times and instruction

b, o
K , mixes of instruction-level simulations of Smalltalk-80 benchmarks (Figure 4.1). Py

A

) Smalltalk-80 image converter  Berkeley Smallalk  SOAR compiler AT
: : i (ror) - (bs) (vewb2s) Ntk

\

unag :
(Xerox) (dmu) (dmu) (ads, poh) , T
RO
O — — —b o0
. ::.: Ny
g — 2

3 SOAR runtime system SOAR assembler SOAR simulaor  simulation resuits :4-:':*
I (sys) (sas) (Daedalus) Gi\j:\
(ads, dmu, poh) (ads, dmu, poh) (ads, dmu) ity

e
—b —b — 2
— IR SAY

N Figure 4.1: Steps involved in a SOAR simularion. First, rot removes the object table from S
the Xerox Smalialk-80 image. We then use BS to make any modifications necessary in the NOCRS
image (e.g. to eliminate some becomes). Newb2s produces s Smalltalk image for SOAR by g
convertiog the BS objects to SOAR format, and running Hilfinger's Slapdash compiler y
which tanslates the bytecoded programs w SOAR instructions. We have also coded the :,%
Smalhalk primitive operations and storage mamagement software in SOAR assembly ¢
language. After this is assembled, it is fed t0 Daedalus, our SOAR simulstor along with the RN
Smalltalk image. The initials below each system indicate its author: ads is Dain Samples, " N
" phu is Paul Hilfinger, and dmu is David Ungar. Q;"
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We have insoumented the SOAR simulator to record two types of data: frequencies
and profiles. Obtaining data from the simulator makes it possible to measure execution
without alering the program being measured. The simulator counts the number of times it
executes each instruction, the number of each type of wap taken. and other events. The
simulator also samples the program counter every hundred insoructions. To gather the data,
we run a benchmark once, reset the simulator’s counters, enable profiling, run the bench-
mark for a second iteration and then dump the raw data to files. (Appendix B contains our
raw frequency data.) Unix™ utilities (awk and sed) analyze the data and report the usage
and value of particular features. (Appendix A contains these results.)

Xerox has defined an official set of benchmarks for the Smalltalk-80 system [McC83).
Some are called ‘‘micro-benchmarks’’ because they test particular small operations like
integer addition. The rest are called ‘‘macro-benchmarks'® because they test large opera-

tions like compilation, display, and exploring System organization. These are typical

high-level activities for Smalltalk-80 programmers. We selected five macro-benchmarks for

our measurements. When writing Smalltalk-80 programs, we spend more time waiting for
the compiler than for anything else. For this reason, we started with the testCompiler
benchmark. The other four benchmarks were chosen because they did not output to the
display and did not require substantial modifications for SOAR. Although fast display out-
put is vital for Smalltalk, it has been addressed by many others, and is outside the scope of
this disseration. The following descriptions of the benchmarks we chose quote from
(McC83]:
testClassOrganizer
‘“This benchmark measures the speed of corversion between the textual and the struc-
tural representations of a class organization. The exampie chosen is class Benchmark

because its organization conwuins many categories.’'
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testPrintDefinition
*“This benchmark measures how quickly a class definition, as it appears in the sysiem
browser, can be generated. The example chosen is an instance of class Compiler
because it has a moderate number of instance variables."’

testPrintHierarchy
*“This benchmark times the printing of a portion of the Smalltalk-80 class hierarchy.
The example chosen is class InstructionStream because it has several subclasses.’’

testCompiler
*“This benchmark measures the speed of the compiler on a slightly longer than normal
method, one containing 87 tokens and compiling into 73 bytecodes."’

testDecompiler
*“This benchmark measures the speed of the Dec~mpiler by decompiling all the
methods in class InputSensor.’

In addition, we used a few micro-benchmarks to evaluate an upper bound for the perfor-

mance impact of specific features:

testPopStorelnstVar
**“This benchmark measures bow quickly a value can be popped off the stack and
stored in an instance variable of the receiver. Because this value is the Smalllnteger
1, there is lintle reference counting overhead on the push or store. 50% of the bytes in
the block are 16r60,* a pop of the top of the stack into the receiver's first instance vari-
able.”

testiplusd
*“This benchmark measures the speed of Smalllnteger addition. Because all values

are Smallintegers. there is little reference-counting overhead. 25% of the bytes in the

block are 16rB0.* a quick send of the message +."'
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¥
testActivationReturn ¥
*“This very important benchmark uses a call on a doubly-recursive method to measure

the speed of method activation and return. There is little reference-counting overbead D

associated with knowing when to end the recursion, but there may be a great deal in ~

A

managing the Contexts that represent the activations. About 12.5% of the bytes exe-

A

oo
ey
N

[¢
Pa

cuted during this benchmark are 16rE0,* a send of the method's first literal (in this

PR A
O

case, the Symbol recur:), and about 12.5% are returns, split evenly between 16¢78,* a

N

'-. ‘l"‘l')‘. .
AL
[
o

quick return of the receiver, and 16r7C,* a return of the value on the top of the stack.’’

N
.

i
5

Ls

- 2 How representative are these five macro-benchmarks? Xerox rates the performance of ,::
et PR
e Smallalk-80 systems relative to the Dorado by taking the mean of the 13 macro-benchmarks e
W 2]
E{. plus the text scanning and BitBlt micro-benchmarks [Bay84]. Table 4.1 below compares the f _,-.:
v o
:ﬁ: compiler benchmark, the median of the five macro-bencbmarks used here, and the Xerox \f‘i
-_“ . :_-‘.
o performance rating for four other Smalltalk-80 systems. The data suggest that the bench- e
marks we used slightly underestimate overall performance. :;:;'
> :Ifi
o We have not considered the interaction between the availability of hardware feawres 3
L] e ‘,,ﬁ
and the sophistication of the optimizations performed by the compiler. The only compiler :'*‘3"
LN A
L N,
o Table 4.1: Comparison of Performance Metrics. NS
e . f median of N
e ‘- classOrganizer | Xerox W
_ . compiler  compiler Performance A
2 decompiler Rating :': )
~ printDefinition &
~g printHierarchy AN
X4 Berkeley Smallalk on Sun 2 [Bay84] % 1% 14% b
e Tekwonix 4404 (Bay84) 25% 25% 26% —
. - Xerox PS on Sun 2 (Bay85) 31% 41% 44% A
A Xerox PS on Sun 3 [Bay85) 80% 99% 109% .':'-4»
;: Xerox Dorado 100% 100% 100% -
N SOAR (simulated @ 400 ns) 103% 107% ? Yy
e 200}
r.Y !
* The 16¢ prefiz denotes s hexadecima) number. For example. 16r7C is 124. .“_:_.‘- »
: o
% =
S o - LN BN ) \-._-f;-

3 , L -
A AR,
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¥ 'Ei;_:‘ ),
P changes we have taken into account are those required to simulate the missing hardware. E;
: For example, to compute the overhead of software type checking, we counted the number of \}:_5
, times that hardware type checking was performed by code from the current compiler and 3 ?‘
l: . -
e multipled that count by the cost of a software check. It is possible that a Smalltalk-80 com- >3
s - 233"
b-: . piler for a machine without hardware support for type checking would reduce the overhead K
: with a dawa-flow analysis to climinate redundant type checking. However, such techniques i
‘. . 'M‘. i
::: are not used in existing Smalltalk-80 compilers, which must cope with dynamic type bind- &
<
g ¢ ing. The performance measurements in this dissertation hold only for Smalltalk-80 systems _,_Li i
- with state-of-the-art compiler technology. v';:
b R
{ R
4.2. Overall Performance: SOAR vs Dorado el
A cedel
N Can SOAR provide acceptadble performance with a single-chip processor? The Dorado '::;:’_;'__
¥, Bk Sl
N is the only Smalltalk-80 system that everyone agrees is fasi .nough. If SOAR can run as fast ';_EI:EI
i . . '...r:. ." 3
as a Dorado, it will certainly provide a usable Smalltalk-80 system. (The Xerox MC68020 g-::;:*-

_“
|

5 .
g

cd

Smallulk-80 system is also approaching the Dorado’s performance.) Table 4.2 compares

Y/

i,

‘ SOAR's performance to the Dorado on five macro-benchmarks and the procedure call

X0

. '&""

micro-benchmark. The Dorado numbers were obtained from Xerox's Smalltalk-80

Newsletter [Bay84]. The SOAR numbers were obtained by simulating the benchmarks for

. N . N -
o two iterations, taking the number of cycles for the second iteration,* and multplying by 400
>,
! ." . L3 . (3
nst, our measured cycle time for the 44 chips. These data show that a 400 ns SOAR will
‘ e
: : perform well enough to please everyone who already uses Smalltalk-80. ::_ \\.
Y e
R OORE
P RNy
B
( gV
g byt
¢ W
- * We consider the second iteration 10 be more representstive. Had we used the umbers for the first iterstion, initial sub- _\_,.'\-
e routine lookups would have slowed the benchmarks down by up 10 10%. N
< * Impiementstion problems with the fast shuffie (Secuon 3.4.3) will prevent full speed operation uniess the memory cy- >3
{ cle tims can be reduced by 100 ns over the chip cycle time. Allernatively. the fast shuffle signal can be ignored, and the chip ::'f.\
could run as » delayed branch architecture {PendSa). L
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s
¥ \'j
Y = . _
N Table 4.2: SOAR Macro-Benchmark resuits, relative to Dorado.
Benchmark Cycles/iter #iter SOAR Dorado SOAR
' i time time speed
¥ | (secs)  (secs) | relative
.::,} : _ to Dorado -
:'\\;: | EestActivationReturn 483694 1 0.193  0.996 S15%
" . estClassOrganizer 06197 1 1.2 1.207 9% |
" | esiCompiler 1095039 S 219 225 | 103% |
~ i westDecompiler 2893596 1 1.16 1243 107% i
N i westPrintDefinition 74159 20 0593 0.849 143% |
o testPrintHierarchy 117585 10 0.470 1.000 213%
s " min 94%
A . median 107% |
P | max 213% |
r-2.
AN
N 43. Relative Performance of SOAR
s
o,
- In the previous section, we showed that SOAR will run as fast as a Dorado. How does
%
- this compare to other Smalitalk-80 systems? Table 4.3 compares the performance of the
compiler benchmark on several Smalltalk-80 systems. Both SOAR and the 68010 are
~ NMOS microprocessors, slthough the 68010 has almost twice as many wransistors as SOAR:
S ’
o 68,000 vs. 35,700. Since Deutsch and Schiffman’s ST68K is also a compiled implementa-
\:.:
Ej: tion [DeS84]), it serves as the fairest architectural comparison to SOAR. Unlike the ST68K
' code translator, the current SOAR compiler generates unnecessary instructions (see Table
Y
:-{ 2.11); a better compiler would improve SOAR's performance. By creating a custom proces-
"
N
. sor, we have more than doubled performance, while halving the number of transistors.
f. Table 43: Compiler Benchmark speed for various Smalltalk-80 systems.
X ‘ Speed relative to Dorado, larger is faster.
T host instruction execution speed
:’,\ processor time (ns) model
- BS UCB 68010 400 interpreter 11%
; Tek 4404  Tekwonix 68010 400 interpreter 25%
Vo PS Xerox 68010 400 compiler 40%
NP PS Xerox 68020 180*  compiler 80%
Ny Dorado Xerox Dorado 70 microcode 100%
D\ SOAR UCB SOAR 400 compiler 103% (
., -
::g * The cycle 1ims is 180 ns for an wnstruction that 13 found 1n the on-chip cache, and 270 ns for one that is not. :::_':5:
N ::—";:
~5 o
~ pro
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4.4. Evalusting Individual Features

Although SOAR's design was driven by empirical results, our experimental subject at
that time was a bytecode interpreter, not a SOAR simulator. Now that we have a compiler,
simulator, and run-time support software for SOAR, we have been able perform an accurate
assessment its features (Table 4.4). (Appendix A contains detailed derivations of the daw.)
Each row gives the feaure’s name, the minimum, average, and maximum effect it would
have on speed were it omitted or added, and the effect it would have on total memory size.
For example, the tagged integer support is described in Section 3.2. If left out of SOAR, and
if the compiler were unchanged, the macro-benchmarks we simulated would take from 14%
to 47% longer to run, with an average time penalty of 26%. The SOAR Smalltalk-80 virtual
image would grow by 15% from its 1.5 MB. Remember that (except for rearranging the
pipeline) our performance figures count cycles and neglect the interaction between architec-
ture and cycle time. For a discussion of cyc_le time effects, see Pendleton’s disseration

(Pen850).

Table 4.4 above groups the features in the order that they were presented in the last
chapter. In Table 4.5, we have reordered them by average performance impact and added
Pendleton’s complexity results in order to identify winner and losers. The complexity index
combines the number of diagnostics, circuit blocks, and hand-drawn transistors required for
a feature. For example, the most complicated feature, multiple on ~chip register windows,

has an index of 10.

The importance of register windows on SOAR stems from an important feature of the
Smalltalk-80 system, fast compilation. Like some other exploratory programming environ-
ments. the Smalltalk-80 system achieves split-second compilation times by compiling each
procedure by itself; there are no macros. interprocedural analysis, nor static interprocedural
binding. Thus, the compiler runs fast because it has shed the burden of binding or optimiz-

ing subroutine calls. This results in a high frequency of subroutine calls, which forces
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Table 4.4: Summary of features and performance impacts. N
feature section in slowdown if omitted expansion S
disseration | if ominted* b
;. best average worst -;3:5_
.__case case e
ype checkinL -(.'_-_I:
wgged inwegers 321 [ 14% 6% 4% 15% o
two-tone insguctions 323 13% 16% 20% 19% A
ngged immediates 324 7.7% 9.6% 11% 1.2% ::-f.\_
interpreration 5:: «
compilation 3.3.1 na. 100%t n.a. -33% os
byte ins/ext instructions 33.1 2.6% 33% 86% 0 o
loadc 33.1 0.05% 0.46% 1.1% 0 -
sll 331 0 0 0 0 X
trap instructions 332 3.2% 3.9% 5.2% 2.0% e
shadow registers 332 | 0.01% 0.04%  0.12% 0 il
vectored traps 3.3.2 C1.7% 2.9% 4.7% 0 ;:-;:‘
fast calls s
register windows 341 | 37% 46% 62% 6.1% 2l
loadm/storem 34 - 0.59% 3.4% 5.1% 2.0% Y
in-line cache 342 | 21% 339 40% -12% N
fast shuffle 343 | 96% 11%T 13% 0 o

parallel nilling 344 3.1% 43%  6.1% 13% R0

storage management

3
L]
i
4

generation scavenging - 35.1 . 4% 10% 15% 16%% DA
direct pointers 351 | 15% 2% 29% 2.3% S
generation tag hardware 351 | 0.25% 13%  3.0% 29% A
| pointer-to-register 35.1 i 0.75% 1% 1.3% 0 5
| implementation STeut
{ forwardi 3.6.3 F12% 15% 18% 0 O
| new feature sectionin |, speedup if added compaction o
disseration | if added* Ok
| worst average best N
case case bty
compare-and-branch 322 C 2.1% 2.6% 3.0% 1.3% <
load/store byte 331 b 3.6% 7.0% 13% 0 o
barrel shifter 331 | 0.15% 037%  0.59% 0 o
multiply/divide 33.1 0.0% 3.2% 8.4% 0 oy
one cycle traps 3.3.2 0.33% 0.63% 1.1% 0 N
instantaneous call lookup 342 na. n.a. 23% 1.2% .
rearranged pipeline [Pen85b] 3.6.3 20% 21% 2% 0

S A
S
)

* The static measurements were performed on our lawst image (Feb. 85). The total size of this image is 1689 kB, how-
ever this includes the old bywcoded object code. When those are subtracted out, the image size drops to 1409 kB. Since we do

N N s Ml
l‘ I..'l
‘s %

80t yet know whether or not we will keep the bytecoded object code. we have chasen to uae the (two significant figure) average .
of 1,500 kB as the 1mage size. .
* Rough estunate based on discussion with L. P. Deutsch comparing various Smalitalk-80 implementauons. ( X
3 This row compares Genersuon Scavenging to Ballard's modified semispaces (see 5.7.2), Deutsch-Bobrow deferred e
reference counung (see 5.6.2), and immediswe reference counting (see 5.6.1), respecuvely. TN
T Pendleion has discoversd that SOAR's implementation of this festure lengthened its cycle time by ~25%. _-‘_:-:
B
S
’- \h &)
Casur
e
.‘-_\-':3
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¢ 69 '\'
gf Table 4.5: Features in order of performance impact. ..J:‘
by Except for rearranged pipeline, excludes impact on cycle time. RN
> ‘ i feature slowdown  expansion  complexity :f;:j,
ﬁ ! if omited _if omitted __[Pen8Sb]
. winners g A}
o compilation ~100% -33% 0 N
fee register windows* 46% 6.1% 10.0 ;::
N in-line cache 33% -12% 13 E %
Pt byte insert/extract instructions 33% 0 40 AT
‘ | agged integerst 26% 15% 46 N
N | direct pointers} 2% 23% 0 e
o . two-tope instructionst 16% 19% na. NN
N . generation scavenging}- 10% 16% 0 - ;::_
N i forwarding 15% 0 4.0 b
iy fast shuffieT 1% o 0.8 b
i ed immediatest 9.6% 1.2% 0.9 —
i:'\' v questionable :I:::
. ! parallel nilling 4.3% 1.3% 25 oy
"> | trap instructions 3.9% 2.0% 1.7 A
N  loadmy/storem* 34% 2.0% 1.6 RN
| pointer-to-register* 3.1% 0 44 Y
vectored traps 2.9% 0 14 Ko
| generation tag hardwaret 1.3% 2.9% 2.3 NG
: losers :}:t\{‘{ Z
"loadc 0.46% 0 0 ﬁ.- '
. shadow registers 0.04% 0 3.2 AL
 feaure speedup  compaction :«.:.Q )
. if added if added :’;':\ 3
winners '@" :
" call arget lookup hardware <23% 1.2% 0!
. rearranged pipeline [Pen85b) 21% 0 S
" Joad/store byte 7.0% 0 BN
; losers SN
- multply/divide 32% 0 i
compare-and-branch 2.6% 1.3% PR
one cycle traps 0.63% 0 AR
barrel shifter 0.37% 0 :

QAT

'R
o
* Register windows. load- and store-multiple. and pointer-to-register all interact. For example, without registier win- B
. dows. joad- and store-muitsple would become much more important. and poinisr-so-regisier would be completely silly. ~ 9
" *+ Tagged imeger instructions, rwo-1one instructions, igged immediates, and generation tag hardware interactions must NN
- be considered. For exampie, once tagged integer instrucuons ase eliminaied, the penalty for eliminaung two-tone instructions . g'.:i ]
- becomss zer0. s,
f, $ The introduction of Generation Scavenging allowed us to exploit direct pointers. ::‘_-4.
v ! T Pendleton has discovered that SOAR ‘s implementation of this festure lengthened the cycle time by ~25%. See Section S ::c \
* 3.4.0. pet;
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a5 ot
%}\ hardware to shoulder the responsibility for efficient execution of calls. This explains why ‘;';,'.’
;051
register windows are so effective for SOAR. Although they add the most complexity of any G
.;k‘l "-*.
’§ ‘ feamre [Pen85b), SOAR would run 46% slower without them. o
ey,
) B %y
& The data suggest that we could simplify SOAR without sacrificing much performance. S
1y If we removed all but the winning features, SOAR would oaly take 19% more time and 8% &3.\,
o :
"}E more memory. Adding Pendleton’s pipeline rearrangement would then result in a simpler _,E
' Ry
W design with the same performance as the original. If we were to include more features, they AL
might be trap instructions, loadm/storem, and vectored traps. Such a design would be 11% F"'.
e niay
‘ :g faster than SOAR. and use only 4% more memory. o
\'- N
¥ Y,
: Four of the features in SOAR are mistakes: parallel nilling, pointer-to-register, genera- o
o tion tag hardware, and shadow registers.* Although fully aware of it, we still fell into what (_',
“:‘ Ly ';_-'
‘f we now call the *‘architect’s trap®’ at least four times: ?'i:;-;
S o)
- »  Each mistake was a clever idea; il
N :.f';ﬁ
; Z)-_ «  Each made a particular operation much faster; :""1;
o4 N
e e Each increased design and simulation time; NN
;"‘-\‘
;‘;} e Not one significantly improved overall performance. N
~ NCY'
_f"\.' Another way to appreciate the worthlessness of these four features is that load/store byte E:
N At
instructions would save more cycles than these four put together. :
vy L
s -__-'\ :
: ) We have put these results to use by cakulating the performance of some variations on ;;ES
W ~
-‘«{'. SOAR and comparing them to some real systems (Table 4.6). Our predictions of SOAR’s NN
A performance are based on simulated macro-benchmark times and do not include virtual ) }f
1 '.'. N! p \
g' memory. operating system, and V'O overhead. However, all of the Smalltalk-80 syswems we E&" f
' . PG
§.S know about tend w be compute-bound for program development. For a fair comparison, we :R‘ y
. ‘ .
% *\1'
':‘-'. ® Loade and sii neither heip nor hinder. Calling them mistakes 13 100 perjorsuve; we would rather think of them as idle 'Q‘\
e pastimes. ;-’\l' ‘
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assume a 400 ns cycle time for SOAR, RISC 11, and MC68010.

By comparing the speeds of different systems, we can gain some insight into the rea-
sons for SOAR’s good performance:

e The speed ratio of full SOAR to RISC II, 1.6 is the same as the ratio of RISC 1I to the
Xerox 68010 system. This indicates that the reduced instruction set architecture
(including register windows) and the Smalltalk-specific hardware festures contribute
equaily to performance.

*  Interestingly, the Deutsch-Schiffman 68010 compiled system is a bit better than the
estimate for SOAR with only the software ideas. Perhaps the optimizations in
Deutsch’s compiler account for the difference.

e  Since the Tektronix system peither compiles nor scavenges, its software resembles a
stripped SOAR. Thus, the similar performance of the Tek system to saipped SOAR
suggests that the stripped SOAR hardware performs as well as the MC68010.

The simplicity and high performance of eliminating all but the winning features and rear-
ranging SOAR’s pipeline make this an appealing design. |

: Tab'e 4.6: Trimming the Fat from SOAR.

| (Assumes 400 ns cycle time for SOAR, RISC Il, and 68010
 configuration __speed  image size
; winners only + rearranged pipeline  103% 108%

! full SOAR 100% 100%

' Dorado 97%

. winners only 81% 108%
- RISCTI 62% 126%
i full SOAR without software ideas 41% 84%

+ Xerox 68010 compiler 39%

: full SOAR without hardware ideas 34%* 132%

" Tek 68010 interpreter 24%

. stripped SOAR 22% 133%

* This figure includes an additional 36% time penalty for losing both windows and losdnystorem.
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4.5. Conclusions

SOAR's hardware and software design represents an advance for object-oriented
experimental programming environments. SOAR has almost half of the transistors of the
68010, yet runs Smalltalk-80 2.5 times faster. Register windows, tagged integer instruc-
tions, direct pointers, and generation scavenging account for most of the difference. These

four ideas represent SOAR's most important contribution to EPE systems.

Our analysis of a feature’s value was based on counting cycles. Barring the pipeline
rearrangement, we ignored the effect of adding a feature on the cycle time (see [Pen85b]).
In fact, some of the fearures we added to the machine must have perversely increased the
cycle time enough to offset the reduction in cycles, thereby slowing down the system. In

particular, the hardware support for sutomatic storage reclamation probably did not speed up

SOAR. Other examples of mistakes in SOAR are the inclusion of parallel register nilling,

lggic to support pointers to registers, and shadow registers to aid mhandlmg We observe
that the inclusion of interesting features that complicate the design but do not improve the
performance of representative programs is a trap that many architects fall prey to, including
us.‘

There are four places to look for further performance gains: compiler technology (out-
side the scope of this dissertation), implementation technology (see [Pen85b]), optimization
of the run-time support primitives (which consume about two thirds of SOAR's time), and
better hardware or software algorithms to cache call target lookups (which consume 23% of
SOAR's time). Of these, implementation technology — circuit design and VLS] Msshg
echnology — have the most dramatic impact. Since we started this project, the standard
VLSI technology available to universities has improved from 4j1 line widths to 3u. This one

change should reduce our cycle time from 400 ns to 290 ns, as important s contribution as

* Pendieton has discoverad that SOAR's implementation of the Fast Shuffie mcurs a 25% penalty when the chip is used
with 2 400 ns memory sysiem (Section 3.4.3). This dwasfs the architectural benefit of an 11% reducion in the oumber of cycies.
In this case the culprit was our failure 1o simwiate the memory sysism along with chip.
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register windows. Another example is Pendleton’s pipeline rearrangement which could
K improve performance by 21%. This is more than the combined effect of parallel nilling, rap

instructions, loadmy/storem, pointer-to-register, vectored traps, and generation tag-checking

h_ardwm.

-

-

. A 70 ns ECL Dorado is the only existing machine that runs Smalltalk-80 fast enough

A
"

.-_..,.
el

2T,

L]
oA

X to satisfy everyone, and the 400 ns NMOS SOAR chips that have been fabricated should run

&
0

>
’\)\{‘\{\ “

just as fast Thus, SOAR will support the Smalltalk-80 system with excellent performance.
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Non-Disruptive High Performance Storage Reclamation

R S e vattr §

e T

. . Throw back the little ones
N and pan fry the big ones;
3o use tact, poise and reason
v and gently squeeze them.
2 Steely Dan,
i - **Throw Back the Little Ones’’
. (BeF74)
5
4
™ 5.1. Introduction
"-
' Early in the SOAR project, we realized that automatic storage reclamation could easily
28
‘I
:.;:’ become a bottleneck. We knew the overhead for allocation and freeing in Smalltalk-80 sys-
i
:2,' tems ranged from 10% to 15% [DeS84, UnP83), that some reclamation algorithms intro-
1
~ duced annoying pauses, that some required the programmer to explicitly free circular struc-
s
:. mres of objects, and that most of the algorithms required microcode support. Since we
e
: needed to attain good performance in a system without microcode we have designed, imple-
. mented, and measured Generation Scavenging, a new garbage collector that
.
Ko,
: *  limits pause times to a fraction of a second,
. " *  requires no hardware support,
\'- e meshes well with virtual memory,
; *  reclaims circular structures, and
e uses only 3% of the CPU time in SOAR. This is less than a third of the time of
deferred reference counting, the next best algorithm.*
124 ’
5 * Experience with SOAR has made us realize thet some of the other algorithms that are usually microcoded need not be. 3
iy - Anhough our original reason for searching for » nsw algonthm proved to de unfounded, we found something that enjoys solid
3 advantages in performance and the ability 1o reclaim circular soructures. . .:\.:.‘
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:i' This section describes the challenge of providing automatic storage reclamation, sur-
b
-;".'f veys some popular algorithms, and presents our solution. It concludes by evaluating the per-
v formance of Generation Scavenging, based on running the Smalltalk-80 benchmarks
McC83] on BS and simulating them on SOAR. An earlier and shorter version of this
> )
'y chapter appeared in [Ung84).
_1' $2. The Relationship Between Virtual Memory and Storage Reclamation
b ' The storage manager must ensure an ample supply of virtual addresses for new objects,
- and must maintain a working set of existing objects in physical memory. Traditionally, the =3
* A
Lo, s
-~ functions have been separated into two parts as shown in Table 5.1 and Figure 5.1. &
N PN
4O :‘t
F Sometimes the distinction between virrual memory and automatic reclamation can lead Wi
o to inefficiency or redundant functionality. For example, some garbage collection (GC) algo- 23
+ Y LS
rithms require that an object be in main memory when it is freed; this may cause extra back- f’-\g
( . s
i ing store operations. As another example, both compaction and virmal memory make room b
'\' for new objects by moving old ones. Thus storage reclamation algorithms and virtual ;"‘*‘;
Syt
] )
A 7 memory strategies must be designed to accommodate each other’s needs. s
N
‘.: . Table 5.1: Traditional decomposition of storage management. ‘f' g
2 ‘name | responsibility pitfall Re
e | virual memory | fewhing data from disk  thrashing s
! ' suto reclamation | recycling address space _distracting pauses to GC hOR
- < st
o : primary memory seco storage ;:::.' T
7 v
S | allocated allocated o
l' \.
a auntomatic (| _ o — _§ vimual | " _ _ [ sutomatic vy
reclamation L memory reclamation B
b m m n '
. g™ '-:‘4’:.
:‘:: . v
': Figure 5.1: Virrual memory vs. automatic storage reclamarion. ' ‘:’f.
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B3 $3. Personal Computers Must Be Responsive éﬂ %
4, o

Personal computers differ from time-sharing systems. For example, with personal
computers there are no other users to blame for distracting pauses. Yet personal machines
have time available for periodic offline tasks, for even the most fanatic hackers sleep occa-

N

5 sionally. Personal computers promise consistently short response times which are known to
boost productivity significantly [Tha81].

. $.4. Virtual Memory for Advanced Personal Computers

b Computers with fast, random access secondary storage can exploit program locality to

manage main memory for the programmer. Advanced personal computer systems manage

! memory in many small chunks, or objects. The Symbolics ZLISP, Cedar-Mesa, Smalltalk-

5 . 80, and Interlisp-D systems are examples. Table 5.2 summarizes segmentation and paging,

; the two virmal memory techniques.

' S4.1. Segmentation

3 A segmented virtual memory enjoys the flexibility of placing each object in physical

- memory independently of the other objects. This packing efficiency can result in better use

': of main memory and a reduction in time-consuming backing store operations. However,

segmentation’s performance advantage disappears when main memory becomes more pien-

i Table 52: Segmentation vs. Paging. .

b ' segmentation paging :

~ chunk size (bytes) ’ 16 to0 65,384 512, 1024, 2048, or 4096 .

N # address space subdivisions | 8 - 65,384 128 - 65,384 i

dd translation map associative direct or associative ?

4 space overhead disk buffers unused portions of pages

. time overhead copying from buffers offline reorganization*

o first implemented B 5000 (1961)[LoK61] Adas (1962)[KEL62)

o current example Intel iAPX-286 VAX-11

A ® While BS is the first paging Smalltalk sysiem 1w employ offline reorganization of the virmal space [B1a83d]. object AN

. swapping sysems starung with OOZE did reorganizations regularly (Ing83]. A A
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! ”
a,.; tfal [Sta82, Sa84). Moreover, the variety and quantity of objects in advanced personal
.:‘::: computer systems pose tough challenges for a segmented virtual memory. In our
!-;m : Smalltalk-80 memory image. for example. the length of an object can vary from 24 bytes
" (points), to 128,000 bytes (bitmaps), with a mean of about 50. Suppose scgmentation alone
1?3?5 is used. When an object is created or swapped in, 8 piece of msin memory as large as the
D) object must be found to bold it. Thus, a few large bitmaps can crowd out many smaller but
‘?Eﬁ more frequently referenced objects.
. When objects are small, it takes many of them o sccomplish anything. Smalltalk-80
R systems already contin 32,000 to 64,000 objects, and this number is increasing. A seg-
5 mented memory with this many segments requires either a prohibitively large or a
3 content-asddressable segment table." This large number hampers address translation.
e |
5 $.4.2. Demand Paging
'j The simplicity of page table hardware and the opportunity to hide the address transla-
) tion time make paging attractive to hardware designeﬁ {Den70). Paging, however, is not a
"é panacea for advanced personal computers. It can squander main memory by dispersing fre-
quently referenced small objects over many pages. Blau has shown that periodic offline
"? reorganization can preveat this disaster [Bla83d]). The daily idle time of a personal computer
:{2 can be used to repack objects onto pages.
r : Many objects in advanced personal computers live only a short time. The paging
§§ literdrure contains little about strategies for such objects. Since their lifetimes are shorter RN
?; than the time to access backing store, these objects should never be paged out. By segregat- ?:
‘ ing short-lived objects from permanent ones, Generation Scavenging permits them to be .' 3 l
;S. locked in main memory. Table 5.3 summarizes the obstacles that advanced personal com- §§E
3 e S T e e T AT e '
$ ebject if s pointer was on & free list [lng83]. E:E;
N
N
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puters pose for a paged virtual memory, and the solutions that SOAR has adopted. BS and
the DEC VAX/Smalltalk-80 system [BaS83] use paging.

5.5. Automatic Storage Reclamation for Advanced Personal Computers

Advanced personal computers depend on efficient automatic storage reclamation. For
example, Berkeley Smalltalk allocates a new object every 80 instructions. This is consistent
with Foderaro's results for a few voracious Lisp programs [FoF81). Since the total size of
the system was in an equilibrium for these measurements, the reclamation rate must match
the allocation rate. The mean dynamic object size is 70 bytes long. Thus, seven bits must

be reclaimed for every instruction executed.

Let's examine several garbage collection algorithms and evaluate their suitability for
advanced personal computers. Where possible, we use performance figures from actual
implementations of these algorithms. The Xerox Dorado Smalltalk-80 system is closest to
an advanced personal computer; when we try to compare results we shall normalize to that
speed. For example, the bandwidth imposed on the BS storage allocator is

mmu x .lobpe' cf x 9000 bvrecodes =7800 bvres .
1 object  BO instructions second second

If we scale this up to the speed of the Xerox Dorado system, the storage allocation rate

exceeds 100 KB/s.

Jon L. White was one of the first researchers to exploit the overlap between the func-
tions of virtual memory and garbage collection, and he proposed that address space reclama-

tion was obsolete in a virtual memory system [Whi80). He pointed out that as long as

Table 5.3: Paging.
_—
roblem description OAR solution

internal fragmentation 1 object per page offline reorganization
address size need 64K 50 byte objects  big addresses (22 words)
paging short-lived objects | page faults for dead objects  segregation by age,

don’t page new ones
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referenced objects were compacted into main memory, dead objects would be paged out to
backing store. This strategy may have adequate performance as far as CPU time and main
memory utilization, but it demands too much from the backing store in a Smalltalk-80 sys-
wm. Even if a 100 MB backing store could keep up with the 100 KB/sec allocation
bandwidth it would fill up in less than an hour.

100MB / disk

T00KB wash / second _ 20 minuees.

This is unacceptabie.

There are many automatic storage reclamation algorithms [Coh81], but they can be
divided into two families: those that maintain reference counts and those that raverse and
mark live objects. In the next few sections, we examine several reclamation algorithms and

discuss their suitability for advanced personal computers.

§.6. Reclaiming Storage by Counting References

Reference counting was invented in 1960 [Col60] and has undergone many
refinements [Knu73, Sta80]. The central idea is to maintain a count of the pointers that
reference each object. If an object’s reference count should fall to zero, the object is no

Jonger accessible and its space can be reclaimed (Figure 5.2).

5.6.1. Immediate Reference Counting

Immediate reference counting adjusts reference counts on every store instruction and
reclaims an object as soon as its count drops to zero. Both the Dorado Smalitalk-80 system
[GoR83] and LOOM [KaK83, Sta82, Sta84] reclaim space with this algorithm. Compaction
is handled separately and typically causes a pause of 1.3 seconds every 1 to 20 minutes on a
Sun 68010 workstation.

Counting references takes time. For each store, the old contents of the cell must be

read so that its referent’s count can be decremented. and the new content’s referent’s count

A

Y
1]

Ny

o]

\'5\-.\1-...."‘, P AP a O g W Do e my D w Py #a Y e S e T T T Ty L SR S L L L T T A LT i A 6 | '.-‘;~q
h\ o WNSa Lty ,’,..-*a ..r“,__.r.\_*.r * G AR A, U O NN A AT NI AN ) ‘ vy v



R -t o W PSR AR RGNS G U L O L T KWV A AN TR N N AP d VL 2

' | 80

~ ) ;'.‘
k. obj 1 obj 2 obj 3 :;'&l‘*

e .

Py

-—

j

. t [ 5,,"
(I l',‘}‘l ..?s'
R
(W W ¥

1

.« 9
Y

LA

1
.

w

Iy

d

Figure 5.2: Swandard reference counting. The standard reference counting algorithm asso-
ciates a reference count with each object. An object is reclaimed when the count goes to
zero. Object 3 is referenced only Dy itself, and is thus garbage. Sioce its count is nonzero,
] it cannot be reclaimed by a reference counting algorithm.
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mast be increased. This consumes 15% of the CPU time [Deu83b, UnP83]. When an .

object’s count diminishes to 2ero, the object must be scanned to decrement the counts of Nt

PLAAA i

everything it references. This recursive freeing consumes an additional 5% of execution Qﬁa}
time (Deu82s, UnP83]. Thus, the total overhead for reference counting is about 20%. This Ty
.\. ' substantial overhead is acceptable for personal computers, but deferred reference counting S
' and Generation Scavenging (discussed below) use much less.

Reference counting cannot reclaim cycles of unreachable objects. Even though the

"whole cycle is unreachable, each object in it has a non-zero count. Deutsch [Deu83b]

' believes that this limitation has burt programming style on the Xerox Smalltalk-80 system
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(which employs reference counts), and Lieberman MBB] has also stated that circular struc-
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tures are becoming increasingly important for artificial intelligence applications. The advan-
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porary objects — about 15 KB when running the Smalltalk-80 macro benchmarks. How-
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> ever, its inability to reclaim circular structures remains a serious drawback for advanced per-
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; 5.62. Deferred Reference Counting e

A
X

The Deutsch-Bobrow deferred reference counting algorithm reduces the cost of main- G

taining reference counts [DeB76). Three contemporary personal computer programming E@
'd

environments use this algorithm: Cedar Mesa, InterLisp-D (both on Dorados), and an experi- =

a0, 1A 4%

mennl Smallalk-80 system which fumished the performance measurements quoted berein fa

. [DeS84). The Deutsch-Bobrow algorithm diminishes the time spent adjusting reference k
-‘: counts by ignoring references from local variables.(l’igm 5.3). These uncounted references %
preclude reclamation during program execution. To free dead ;)bjeclS. the system periodi-
cally stops, and reconciles the counts with the uncounted references. On a typical personal

A

o
73NN

n T

-

computer the algorithm requires 25 kB more space than immediate reference counting, and

IS
r:'[

ooy
{

SANNN

averages 30 ms pauses every 500 ms.

Baden's measurements of a Smalltalk-80 system suggest that this method saves 90%

]

~of the reference count manipulation needed for immediate reference counting [Bad82).

-'J"
{

A

e f‘t
Sy

Deferred reference counting spends about 3% of the total CPU time manipulating reference

counts, 3% for periodic reconciliation, and 5% for recursive freeing. Thus, deferred refer-

AR ) aiahindyy,
X

e
. r

ence counting uses about half the time of simple reference counting.

stack CR

' Figr:re 53: Deferred reference counting. The deferred reference counting algorithm does 9
N 20t count references to objects from the executiop stack. A zero count does pot ensure that
A an object is reclaimable; it may still have references from the stack. t
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fﬂ What would be the space cost for deferred reference counting on SOAR? The most
"!.’ .
E{':‘ Q efficient representation of a reference count on SOAR would be one word per count. Table

5.4 shows the code sequence for reference counting on SOAR. Since this sequence is nine

S" words long, we can multiply the number of tagged stores by nine to compute the code over-
Wk hud for reference counting on SOAR (Tsable 5.5). This calculation shows that a straightfor-
N} ward implementation of deferred reference counting would increase the image size by 16%.*
; ;j Although more efficient than immediate reference counting, deferred reference count-
2y ing still does not reclaim circular structures. This is its biggest drawback.

Ei 5.7. Reclaiming Storage by Finding Reachable Objects

"E. . Marking reclamation algorithms collect garbage by first traversing and marking reach-

A

able objects and then reclaiming the space filled by unmarked objects. Unlike reference

-'. FA 4
WXl o
0

counting, these algorithms reclaim circular structures.

)‘-‘ﬁ“ *
e

. — — r
—~ ; Table 5.4: Reference countin, uence on SOAR. i s

5 | %load _(storeOb;)offset, oldContents j nE
i | load (oldContents)countOffset, oldRC /* tag trap handles int case */ ; X

: | %skip  eq oldRC, 1 i f.':",'._
<2 | %call  freeRoutine ; 5
W | %sub  oldRC, 1, oldRC Pty
’ i %store  oldRC, (oldContents)countOffset ; ""j!
-,  load (newContents)countOffset, newRC , DA
N %add newRC, 1, newRC ' YD
e ' %ostore  newRC, (newContents)countOffset AN
¥ el
-‘." . ‘f‘:{‘
[ Table 5.5: Static cost for reference counting on SOAR. | g_-r;il
o number of tagged store insquctions 3578 :vt::i:
7 mean object length 14 words :ﬁ"-.,.:'
! towl size of image 1,500 kB e
P relative space cost of code 8.59% M
relative space cost of counts 7.14% gy
-, total space cost 15.73% ?‘5’:
~) uds
§ '-: :‘t‘:
:" * The time required 10 manipulate reference counts on stores is the time (o adjust a count, psrhaps 25 cycles. times the "\\v‘
“ froquency of tagged siore instructions, o 0.36% (Table A.47). diveded by the average cycles per instruction. o 1.5. This gives ;&ﬁ
~ ;c:uuudb%. If reconcilistion adds another 2%, we obtsin s totsl of 8%, which is consistent with Deutsch's measure- ;;g
O ::-":-::
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The first marking storage reclamation algorithm, mark and sweep, was introduced in

1"
LD

.i;: 1960 [McC60]. It has many variations [Coh81, Knu73, Stu80), and is used in contemporary :,;-é
i Y
H ™

systems [FoF81]). Afier marking reachable objects, the mark and sweep algorithms reclaim

. B

one object at a time, by sweeping the entire address space. Faweman has found that some

25 N
‘r., Franz Lisp programs spend 25% to 40% of their time marking and sweeping [Fat83) and :'5'{5
A -.J'
o require about 1.9 mB for dynamic objects (compared to about ] mB for swatic objects). ;:_;5
E L:{ f
. These algorithms are inefficient because they access a large number of objects; the marking 5=t
; : -_'.p"‘
w phase inspects all live objects, and the sweeping phase modifies all dead ones. }:cc:
; oy
|‘ : ~’\-'..
?,'3'- The marking phase inspects every live object and thereby causes backing store opera- ;E;
" tions.* Foderaro found that for some LISP programs, hints to the virtual memory system .1:"
]
”,
> could reduce the number of page faults for a mark and sweep from 120 to 90 [FoF81). Even .
2‘4 with hints, marking and sweeping with paging causes on average a 4.5 second pause every \ 1‘
i ~.§ 79 seconds. This is unacceptable for an interactive personal computer. f..','.'_i
Oy '\u'::i
8 "‘-fq
I o
3 8.72. Scavenging Live Objects ey
' Y
5 The costly phase of sweeping dead objects can be eliminated by moving the live 57,
. *: :-f“')"
335' objects to a new area, a technique called scavenging. A scavenge is a breadth-first traversal ;"" -
-t N
! of reachable objects. After a scavenge. the former area is free, so that new objects can be oo
.- allocated from its base. In addition to the performance savings, a scavenging reclaimer also .':j
2. RN
20 compacts, obviating a separate compaction pass. Scavenging algorithms must also update 7',.;:.
N 3
e pointers to the relocated objects. o
e |
=
$3 Automatic storage reclamation algorithms that scavenge include Baker’s semispace 2
cP‘ ) \.‘"
.Z-a slgorithm [Bak77], Ballard's algorithm [BaS83), Generation Garbage Collection [LiH83], _}_:‘.::
N ;
3 and Generation Scavenging. Baker's algorithm divides memory into two spaces and ¢ &
I“ "
W . © The swoep phase also requires backing store operations. but its sequential nsture accommodates prefesching. -::-;’
3 .
o
£
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scavenges all reachable objects from one space to the other (Figure 5.4). Ballard imple-
mented this algorithm for his VAX/Smalltalk-80 system and observed that many objects
were long-lived. The addition of a separate area for these objects resulted in a substantial
performance improvement by eliminating the periodic copy of them. Ballard’s system has
600 KB for static objects, a 512 KB object table, and two 1 MB semispaces for dynamic
objects. It spends only 7% of its time reclaiming storage, including sweeping the object
table to reclaim entries. Since it is embedded in an interpretive system that runs
Smallalk-80 programs a twelfth as fast as the Dorado (Table 2.2), the CPU overhead for this

algorithm may rise above 7% on a high-performance system.

- Generation Garbage Collection {LiH83) exploits the observation that many young
objects die quickly and generalizes Baker's algorithm by segregating objects into genera-
tions, each within its own space (Figure 5.5). Each generation may be scavenged without
disturbing older ones, permitting younger generations to be scavenged more often. This
Wes the time spent scavenging older, moﬁ suble objec':ts. At Mn there are no pub-
lished performance data on thjs algorithm.

The scavenging algorithms above incur hidden costs because they interieave scaveng-
ing with program execution. The key idea is to avoid pauses due to scavenging by subdivid-
ing the work and scavenging a few objects every tim.e a new one is allocated. The problem

with mixing execution with reclamation is that the program may try to use a pointer to an

before scavenge after scavenge
a4 S~
= Sc c::

N

Figure 5.4: Baker semispaces. The Baker storage reclamation algorithm divides memory
into semispaces. When one fills up, the live objects in it are copied to the other semispace.
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1‘::1 X Figure 5.5: Generarion garbage collection. Generation garbage collection is a gevenaliza- .
A tion of Baker semispaces. This algorithm divides memory into many small semispaces, one S5
RO : per “‘generation.” When a semispace fills up, its contents are scavenged to the next one. P
f - ok
. ',- object that has been scavenged to another area. This problem can be solved by checking all N
135 :
; >, loads and following the forwarding pointers, but the solution in turn imposes additional -:'_:-__
N N
— overhead on the running program. Thus, eliminating pauses slows execution.
W
f: Algorithms that segregate objects into generations must maintain ables of references "}S}'_:
>, &)
\: from older to younger objects. These algorithms save time by reclaiming space in younger :::;‘*Zj '
o' i
) generations without traversing older generations. The burden of maintaining these tables -
v o
:t falls on some store instructions. :.:';',' ;
" ot
& o
' 538. The Generation Scavenging Automatic Storage Reclamation Algorithm t’-:' p
# LRICS
:: Generation Scavenging arose from our attempts find an efficient, unobtrusive storage Z:;-.: ,
ot e
-}' reclamation algorithm for SOAR that did not require microcode. Our test vehicle was sv"\-'
{y « ;f:
‘ Berkeley Smalltalk, which originally used reference counting. Measurements of BS object !
59 .-...
‘% lifetimes proved that young objects die young and old objects continue to live. We then :}_;;"
3 designed Generation Scavenging to exploit that behavior and substituted it for reference f-;
(L LN,
R counting in Berkeley Smalitalk. The resuit was an eight-fold reduction in the percentage of L
A &, - .u\_n 4
> time spent reclaiming storage — from 13% to 1.5%. In addition, the intrinsic compaction ,‘:E"\
: MESAN
g provided by scavenging made it possible to eliminate the Object Table and its accompanying E‘:&:
T indirection. After eliminating the object table and reference counting, BS ran 1.7 times fas- ;‘__ >
LA 4
s ter than before. In addition to the performance improvement, since Generation Scavenging EEE
Tt ™
N was not based on reference counting, it was able to reclaim cycles of unreachable data struc- ( :::'
o
. - m. -_$~ I'
. .. \d
¥ . Ny
N .,.'\a
“i‘ -_\.\
".. ' l.“
N '.."u-.‘-d
3 =
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5.8.1. Overview of Generation Scavenging Algorithm

oo

: a4
AY(d
A Each object is classified as either new or old. Old objects reside in a region of memory B

called the old area. All old objects that reference new ones are members of the remembered
ser. Objects are added to this set as a side effect of store instructions. (This checking is not
required for stores into local variables because stack frames are always new.) Objects that no
t longer refer to new objects are deleted from the remembered set during scavenging. All pew
objects that are referenced must be reachable directly from the old objects in the remem-
i bered set, or through a chain of new objects ultimately linked to the remembered set. Thus,
a traversal in new space, starting st the remembered set (and virtual machine registers) can
E find all live new objects. Table 5.6 summarizes the characteristics of the two generations for
Generation Scavenging.
There are three areas for new objects (Figure 5.6):

e NewSpace, a large area where new objects are created,

e PastSurvivorSpace, which holds new objects that have survived previous scavenges,

and

*  FutureSurvivorSpace, which is used only during scavenging.

A scavenge moves live new objects from NewSpace and PastSurvivorSpace to FutureSur-

WA

vivorSpace, then interchanges Past and FutureSurvivorSpace. At this point, no live objects

%
i

Table 5.6: Generations in Generation Scavenging for BS.

contents volatile objects  permanent objects

residence Dew space old space

space size 200 KB* 940 KB -

Jocation main memory demand paged ; T i—'_.

creawed by instantiation tenuring I

reclaimed by scavenging mark-and-sweep BN ING

reclaimed every 16 sec 3-8hrs o

reclamation takes | 0.16 sec S min ;‘;;,';5-'-
o

~

.-\é.__-‘

BEIRSG I, PSR BB N NN O AL O

* 140 KD for New ares + 2 * 28KB for survivors
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are left in NewSpace, and it can be reused to create more objects. The scavenge incurs a
space cost of only one bit per object. Its time cost is proportional to the number of live new
objects and thus is small since oaly 1 in 20 objects survive a scavenge. If a new object sur-
vives enough scavenges, it moves to the old object area and is no longer subject to online
sutomatic reclamstion. This promotion t© old stats is called renuring. Figure 5.7 depicts

both the old and new areas for Generation Scavenging.

$.8.2. Detailed Description of Generation Scavenging

Recall that the purpose of a scavenge is to transport the surviving new objects from
NewSpace and PastSurvivorSpace to FutureSurvivorSpace. A one-pass breadth-first algo-
rithm copies the objects and updates pointers to them as it goes along. It starts by searching
all the old objects in the Remembered set for pointers to new objects, which it copies to
FutureSurvivorSpace. Then. it updates the pointer to point to the copy instead of the origi-
nal, leaves another pointer to the copy in the first word of the original, and sets a flag bit o
indicate that the original has been moved. If the scavenging algorithm encounters a refer-

3

objects created here
scavenge

survivors of previous scavenge
t .5 ] scavenge objects to here

OoDD <
scavenge N

objects created here

s 1 scavenge objects to here
. 5 __J survivors of previous scavenge

Figure 5.6: Generarion Scavenging's three areas for new objects. The largest area holds
pewly-created objects (NewSpace). Two smaller areas alternately hold objects that have
survived previous scavenges (PasiSurvivorSpace) and receive objects copied by the current
scavenge (FurureSurvivorSpace). This unbalanced division saves memory over a sem-
ispace algorithm.
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promote to here & Q—J %oldobjm
S i paged viral memory
i
——

Figure 5.7: Bird's eve view of Generation Scavenging. Afier an object has survived
enough scavenges, it is promoted to the old object area. New objects are locked down in
physical memory; old objects reside ip virtual memory and may be paged out.

ence to the same object again, the flag bit and forwarding pointer will enable it to detect that

%
the object has already been scavenged and to update the reference. Afer this first pass. all ’s;\‘,
.new objects referenced by old object bave been scavenged. Now, the algorithm swrts 'ﬁ
traversing FutureSurvivorSpace and scavenging any new objects referenced from there. As ":f:?:;
more objects are copied, the end of FutureSurvivorSpace grows away from the scan, untl ;E%
finally. all live new objects have been scavenged and the scan caiches up to the end. At this Erﬂ
point. the algorithm werminates. o

In addition to preserving live objects, those objects that survive for a long time must be

promoted into OlcSpace. If they were not. much nmc would be wasted copying and recopy- s3-—
ing she same objects back and forth. So, each object includes a count of the number of é.
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scavenges it has survived. If this count should reach a cerain threshold, the object gets
scavenged to OldSpace instead of FutureSurvivorSpace. At this point, the object must be
added on to the end of the remembered ser in case it contains any pointers to other new

objects. After completing a pass, the algorithm checks the remembered set. If it has grown,
the new part is scanned, which may add objects to the end of FutureSurvivorSpace. Then, if

FutureSurvivorSpace has grown, the new portion of that area must be scanned, which may

AN

add objects to the end of the remembered ser. The final form of the algorithm, therefore

resembles two coroutines: one which searches the remembered ser, and another which

AR

'

. searches FutureSurvivorSpace for pointers to new objects. This is easily implemented in C
n\.
Y
) with two subroutines called alternately in 2 loop. The loop terminates when one of the sub-
P\l
; routines completes without adding more objects for the other one to scan.
. 'r:
e We now present the Generation Scavenging algorithm top-down, in pidgin C:
:'_:E suct  space {

word_t *firstWord;,  /* start of space */ ‘

ol int size; /* number of used words in space */
» i 8
o
‘-"
~. stuct object {
) imt  size,
' =
', boolean isForwarded,
G isRemembered;
:}:ﬁ union {
“J: struct object  *contents{],

< *forwardingPointer;

Y

! )
l?{
N
;;3 ‘struct space  NewSpace, PastSurvivorSpace. FutureSurvivorSpace, OldSpace;

Eﬁ‘ struct object  *RememberedSetContents{MaxRemembered);
»:: int RememberedSetSize;

2,52 .9 ) "> N

'r:.i""'

‘l .l
"(":' oo

X

A8 N e |
N AR
:\‘.'l'ﬁ ‘:‘* o

~

-l
v A

LN

P
N

. AR
LAY
Vo'

e,
Lyt
L]

A

o P
Ty :'."/"."'f v

»

o

M4

AEAATE
Ay 4

A
:!"'

N

B

T,
L
<

Y
A

g

I3 I W AV ST AN . ? NI W 3R AT 7 APy A TS WL 0 N S AN AR G S S Sy ‘-.‘-.""-.‘-‘m-.'"-.‘.‘.'-
e AT N AP e SO s PR Tt o/ ot Nt M 3 BN I W A RS A AN RS



R S R A AN U LS TR NP N AL T T B TR vk CH AR NN XN Rkt ATATY TR . T ) I'I'
’ | v,
| R
| 90 7o
I N
E L | R
’ . “The main rovtine, generationScavenge, first scavenges the new NN
i ¢ . objects immediately reachable from old ones. Then it scavenges =
‘ . those that are transitively reachable. If thus results in A
! . a promotion, the promotee gets remembered. and it first N
E * scavenges objects adjacent to the promotee. then scavenges the ,::.t:.
i * ones reachable from the promoted. This loop continues until Y05
» . no more reachable objects are left. At that point, oy
I . . PastSurvivorSpace is exchanged with FutureSurvivorSpace. il
* Y
k _.! L)
; *  Notice that each pointer in a live object is inspected once and SE
. only once. The previousRememberedSetSize and RN
E d previousFutureSurvivorSpaceSize variables ensure that no object Y
o is scanned twice, as well as detecting closure. If this were SR
i * not true, some pointers might get forwarded twice. T
*/ Ny
- » 'l “,
: , S
. generationScavenge() :.:::::.
? { ALY
b int previousRememberedSetSize = 0; sl
\ it previousFutureSurvivorSpaceSize =0; Lo
. s
- scavengeRememberedSetStarting At(previousRememberedSetSize); -';.e'.‘".n
N if (previousFutureSurvivorSpaceSize == FutureSurvivorSpace.size) S\
i break; T g
: AR
. o
3 previousRememberedSetSize = RememberedSetSize; L;-:j::
. scavengeFutureSurvSpaceStarting At( R
. previousFutureSurvivorSpace.size): RO
i if (previousRememberedSetSize == RememberedSetSize) :{-.t'-:
break; :
. N
E: previousFutureSurvivorSpaceSize = FutureSurvivorSpace.size; :E“';'
; S
: exchange(PastSurvivorSpace. FutureSurvivorSpace); .":'E
. } L
3
. P
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;
: ”
' . scavengeRememberedSetStarting At(n) traverses objects in the remembered
' . set starting at the nth one. If the object does not refer to any new
I . objects. it is removed from the set. Otherwise, its new referents

. are scavenged.
] .,
b
t scavengeRememberedSetStartingAt(dest)
! int dest;

{
; int source;
r
s for (source = dest: source < RememberedSetSize; ++source)
K if (scavengeReferentsOf(RememberedSet{source])) {
i RememberedSetContents[dest++] =
! RememberedSetContents|source];
: }
. else
" resetRememberedFlag(RememberedSetContents|source));
t RememberedSetSize = dest;
. }
»
gt
5 "
. . scavengeFutureSurvSpaceStarting At(n) does a depth-first
i . traversal of the new objects starting at the one at the nth word
. . of FutureSurvivorSpace.
:r "
‘I
:‘, scavengeFutureSurvSpaceSarting At(n)
' intn;
i {
: stuct object *currentObject;
'-Z while (a < FutureSurvivorSpace.size) {
: scavengeReferentsOf(
k currentObject = FutureSurvivorSpace.firstWord(n]);
; : n += $i2eOfObject(currentObject))
: }
'
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. -scavengeReferentsOf(anObject) inspects all the pointers in anObject.
. If any are new objects, it has them moved to FutureSurvivorSpace,
. and returns truth. If there are no new referents, it returns falsity.

. For simplicity here, an object is just an array of pointers.
./
scavengeReferentsOf(anObject)
struct object *anObject;
{
inti;
boolean foundNewReferrent;
struct object *referent;
foundNewReferent = FALSE;
for (i = 0; i < anObject->size; i++) {
referrent = anObject.contents|i);
if (isNew(referrent)) {
foundNewReferrent = TRUE;
if (lisForwarded(referrent))
copyAndForwardObject(referent);
anObject.contents[i] = referent->forwardingPointer;
}
}
return (foundNewReferrent);
}
,‘
. copyAndForwardObject(obj) copies a new object either to
. FutureSurvivorSpace, or if it is to be promoted, to OldSpace.
. It leaves a forwarding pointer behind.
./

copyAndForwardObject(oldLocation)
struct object *oldLocaton;

{

struct object *newLocation;

if (oldLocation->obj_age < MaxAge) {
++oldLocation->obj_age:
newLocation = copyObjectToSpace(oldLocation,
FutureSurvivorSpace);

}

else

newLocation = copyObjectToSpace(oldLocation, OldSpace):

oldLocation->obj_forwardingPointer = newLocation;
oldLocation->obj_forwarded == TRUE;
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How do old objects get reclaimed? An offline reclamation program traverses and
copies all objects in depth-first order to a file. This is a three-pass algorithm: The first pass
copies the live objects to a file and leaves forwarding pointers in the original objects. The
second pass traverses the file and updates the pointers. The third pass reads the file into
memory, overwriting the original area. Copying rearranges the objects into depth-first order,
which helps to reduce the number of page faults [Bla83b, Bla83d, Sta82, Sta84). The whole
process takes a few minutes. If it is only required once or twice a day. it should not be too
disruptive.

5.83. Comparing Generation Scavenging to Other Scavenging Algorithms
Generation Scavenging most resembles Ballard's scheme [BaS83]:
] It segregates objects into young and old generatons.
. It copies live objects instead of sweeping dead objects.
¢ Itreclaims old objects offline.
Generation Scavenging differs from Ballard’s Semispaces and Lieberman-Hewitt’s Genera-
tion Garbage Collection [LiH83). Unlike those algorithms, Generation Scavenging
*  conserves main memory by dividing new space into three spaces instead of two.

. is not incremental. Instwead, the small pauses inoroduced by Generation Scavenging are
unnoticeable in normal interactive sessions. (They are noticeable in real-time applica-
tdons such as animation.) Incremental algorithms require checking on every load

instruction. and Generation Scavenging saves this time by not being incremental.
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$.9. Performance Evaluation of Generation Scavenging

How well does Generation Scavenging perform in Berkeley Smalitalk and SOAR? We

concentrate on four metrics:

e CPU time overhead, the CPU time spent reclaiming storage divided by the total CPU
time in the session,

e pause time, the time that the user must wait for reclamation,

e peak main memory usage, the amount of main memory that must be dedicated for tem-
porary objects, and

o backing store accesses, the number of times that the reclamation algorithm requires

data not present in main memory.

$.9.1. Evaluating Generation Scavenging in Berkeley Smalitalk

The Smalltalk-80 macro benchmarks [McC83) consist of representative activities like
compiling and text editing. We measured the performance of Generation Scavenging in BS
while running these benchmarks. Although our worksaation had 2 MB of main memory,

only about half of that was available to Berkeley Smalitalk. Table 5.7 shows the results.

BT
-

CPU Time Cost. Our measurements of BS show that Generation Scavenging requires

!
A
>

.I v
LS
AN
St
I\J

only 1.5% of the total (user CPU) time. This is four times better than its nearest competitor,

AT
;\ffu'
A ey

Ballard's modified semispaces, which takes about 7%.

e
One reason that Generation Scavenging looks so good is that BS executes programs EE.E
more siowly than some other Smalitalk-80 systems. However, the next section shows that g'\‘:";
Generation Scavenging performs well on fast Smalltalk-80 systems. i_'
=
Main Memory Consumption. Although each of the three new object areas occupies E}E.
140 KB of virtual memory (420 KB total), only 28 KB of each survivor area gets used. The g-‘,,fs
rest serves as a reserve against pathological survival and need not be resident. Thus, the ;::-
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o, [ Table 5.7: Performance of Generation Scave bS
N total instructions executed . 4500 k Ei
_ amount of storage reclaimed | 3900 KB ot
3o amount of tenured storage - 9.1KB g
<4 number of checked stores ; 190k :ﬁ-’:
o : number of remembered objects | 320 e
Ko number of scavenges I 32 Rryos
“¥ mean length of survivors ! 4.8 Kword 4
) total user CPU time i 280 secs. :j.:ij
?.'-. total Real time i 500 secs. N
N real Gme scavenging . 1.8% oD%
‘ f‘: user time scavenging ; 13% 3.::-::
W time checking stores ¢ 0.1% L
’ max old space used : 940 KB —
< max new space ' 140KB .j::_',:
oy max Survivor space - 28 KB R
P toul size 1800 KB 3
X resident set size . 930 KB :::3
~ total page faults - 61 -
. min pause time* 90 ms s
-~ median pause time* 150 ms e
A mean pause time* " 160 ms e
o 90th %ile pause time* 220 hxe
ho) max pause time* - 330ms s
~ mean time between scavenges 16 seconds -4
e MRS
.' ~ .'.‘ :,.:
3’ ol primary memory cost for dynamic objects is 200 KB, about 10% of the BS main .'*_'-,.?
P2 R0
! ~ memory. If we used Baker semispaces with the same scavenging rate, each space would .f.'::;
/ P X4
v need to be 140KB + 28KB, for a touml of 360 KB, almost twice as much as Generation o
. ‘ot
e . “.
:':,:: Scavenging. :;::.
- A
23 'I ' . -‘
X Backing Store Operations. Since new objects are always created in the same area, I
i:: they can remain in main memory. Unfortunately, Unix on the Sun 68010 workstation (Sun :Ij-::
i‘\u _:."_‘\
::Z Release 2.0) does not implement the system call that would lock down this area. Thus, the -
L .‘--,‘.
: first six scavenges caused 283 minor page faults (page reclaims), and the rest of the ;:
Wy G
scavenges caused four. With a working set of 930 KB, 60 major page faults occurred during e
s
",J the benchmarks. 0%
» o
o * excinding first six scavenges, which thrashed because Unix would not et us Jock down the new ares. "‘-‘
P\ e
s e
‘ ~d
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Pauses. Except for the page faulting during the first six scavenges (see above), the
pauses were small and mostly unobtrusive, averaging 150 ms. The longest pause was only
330 ms. About 15% of the pause time was spent in the Unix kernel on unrelated overhead.
Since people have difficulty noticing pauses of 100 ms, this algorithm's performance meets

our requirements.

5.92. Evaluating Generation Scavenging on SOAR

The previous section shows that Generation Scavenging performs well in BS, requiring
fewer than 1.5% of the CPU cycles. How well will this algorithm perform on SOAR?
SOAR will run Smalltalk programs ten times faster than BS. This will result in ten times
more garbage creawed in the same amount of time, but, we would not expect Generation
Scavenging to run ten times faster on SOAR than in Berkeley Smallaalk. If it ran at the
same speed. then the overhead for scavenging on SOAR would be ten times worse, or 15%.
In fact. as we show in Section 5.9, Generation Scavenging takes only about 2% of SOAR's

$.9.2.1. SOAR Scavenge Duration

We have written Generation Scavenging in SOAR assembly language and simulated it
in the course of running the macro benchmarks. Table 5.8 gives measurements of 12
scavenges, 9 from the decompiler benchmark, two from the printDefinition benchmark, and
one from the compiler benchmark. (See Chapter 4.1 for a description of the benchmarks.)
As expected, the duration of a scavenge can be predicted from the number of words of new
objects that survive the scavenge. Figure 5.8 superimposes the observed data with a linear
regression. The regression predicts that the number of cycles for a scavenge is

24xsurviving -words +3500 with a correlation coefficient r of 0.976.

The last column of Table 5.8 gives the duradon, or pause time of each scavenge.

assuming 400 ns per cycle. Despite identical cycle times. SOAR's mean scavenge time was
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Table 5.8: Statistics on twelve scavenges simulated for SOAR.
The last column assumes a cvcle time of 400 ns. ?

1-4...

median {

%
-t

45,000 2,000 22 18
48,000 2,200 22 19
(13,000) (540) (14) (5.0
57,000 2,500 23 23
70,000 3,100 25 27

e

(s.d.) {
T5%ile l
max

]
a

.'.’/

— a1
name of scavenge data cycles | scavenge
o benchmark time scavenged per time ;
:: i {cycles) (words) word | (ms)
~ 1 decompiler 56,832 2,477 23 23 :
NN 2 decompiler 45,832 2,028 23 19 !
3 decompiler 45,491 2,022 2 18 i
2% 4  decompiler 41,262 1,828 23 17 z
2 5 decompiler i 69,937 3,114 22 27
2 6  decompiler | 37,449 1,692 2 15
< 7  decompiler i 37,157 1,693 23 16 ;
9 8  decompiler i 30,100 1,489 20 12 !
' 9  decompiler : 29,228 1,489 20 12
o 10  printDefinition | 63,417 2.542 25 25 |
A 11 printDefiniion ; 53,535 2.587 2] 22 !
-3 12 compiler ! 60,374 2,834 21 24 !
N2 min T 29,000 1.5 0 | 12
AR 25%ile | 37,000 1,700 2] 15 |
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; Scavenge duration as 2 function of words scavenged.

8

s

AN Nl DO Pt BOw~BnE ONDIOCHON

Ris : |
2 -+ + . . —
1000 1500 2000 2500 3000 3500 -
wonds scavenged

Figure 5.8: Predicting the duration of a scavenge. This graph shows that scavenge dura-
tion can be predicted from the sumber of words scavenged.

19 ms, eight times less than BS's 160 ms. There are several possible explanations:
e A SOAR chip receives 32 bits from memory every cycle whereas the 68010 is limited
to 16 bits. Thus the SOAR system has twice the memory bandwidth.

e  The simulated SOAR scavenging copied less data than the BS scavenges. The most

likely explanation is activation records: BS keeps them in new space forcing each
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scavenge to copy them. On the other hand, SOAR allocates activation records in a
separate stack that gets scanned rather than copied. The numbers show that the aver-

age BS scavenge copied 4.8 Kwords whereas the average SOAR scavenge copied only

2.1 Kwords. This accounts for 2.3 times the work.

The above two explanations sogether account for & factor of 4.6, leaving a factor of 1.8 per-

formance improvement to be explained by the next two differences (which are barder to

quantify):

e  Assembly code can be more efficient than C. Generation Scavenging is written in

assembler for SOAR and in C for BS.

e  SOAR's architecture runs programs fasier than the 68010’s. In particular, the reduced

instuction set, register file, word addressing, fast shuffie, and tag checking hardware

might contribute to the performance improvement of scavenging in SOAR.

5.9.2.2. SOAR Scavenge Frequency

The worst SOAR scavenge took 27 ms., which is well below the threshold for an L

annoying pause. However, if the time that a program could run between scavenge and the " *

: next were too short, the 27 ms pause would still be unacceptable. The length of this gap Eg.
between pauses is determined by the creation rate for new objects and the by amount of %%
a5

memory available to hold them. To measure this interval, we ran six benchmarks on SOAR

I

4

and measured the rate of object creation during a (randomly chosen) portion of each. The

S N
AL
FLI

*

dats are presented in Table 5.9. With 150 KB available for newly-created objects, 2.3
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seconds of computation will be available to amortize the 27 ms scavenging pause. The crea-
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. Table 5.9: Space allocation rate benchmarks on SOAR. i Yoy

L (Samples are complete second iterations of each benchmark.) -]

o (Assumes new area size = 150KB, cycle time = 400 ns.) ‘ \:‘::

g—?‘—————_——,—_—

! | benchmark duraton space growth  growth | scavenge : O
b, | allocated | rate rae interval | BN
» (cycles) (words) | (w/ke)  (kwrsec) (secs) | *{’2 "
N decompiler 2958219  36.886 12 31 12 A

) printHierarchy 119,040 1.426 12 30 13 2

alllmplementors | 2,257,051 18,058 8.0 20 19 ! SR

- printDefinition 75,319 509 6.8 17 23 ! el
o compiler 1,117,660 7.467 6.7 17 23 ot
- classOrganizer | 2,959.728  9.905 33 8.4 46 pRY
= mean - - 8.1 21 23 -
" s.d. -— -— 34 8.6 1.2 A
>, Lt

) ’._:_._

y 5.92.3. Net SOAR Scavenge Overbead = e
. O

Given the above data, we can calculate the pause time, gap between scavenges. and i
? N
” average scavenge overhead (Table 5.10). The results that generation scavenging is :;IE_. -
b R
: non-disruptive; a 27 ms pause every second is hard to notice. Furthermore, scavenging uses :.-f-f;
¥ )
! . . NN
~ less than 2% of the CPU time, allowing the computation to proceed at full speed. L
Ej 5.92.4. Generation Scavenge Trap Time E\S
~° \"‘:"\
>, I
" Recall that the Generation Scavenging algorithm maintains a table of references from Rl
A
:f: old to new objects. SOAR traps when it creates such a reference, enabling the trap rouune o :I:E'.:- :
- s

X o
'4::: enter the address of the referenced object in the wable. Table 5.11 gives an analysis of store o
2. ‘.

. trap overhead for the simulated macro benchmarks. The path length of 100 cycles for a store -

. "

3 trap was determined by assuming a 1 in 8 chance of window overflow, and taking the worst ;:}-:

X — N

" _Table 5.10: Extrapolated vs. Simulated Scavenging on SOAR. A
N _ best case average WwOrst case ——

- ' pause time 12 ms 19 ms 27 ms e
N - scavenge interval 4.6 secs 2.3 secs 1.2 secs | RO
i scavenge overhead 0.3% 0.8% 2.3% ' RN
i’ wapping overhead | 0% 0.05% 10% | A

. ' total overhead 0.3% 0.9% 33% | NG

3o g
)

Oy A
- 3.8
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3:, case for the other branches. The worst case overhead to maintain the remembered set is 1%, ':.;f

*v,?' N o,

with a median of 0.05%. ::

gt ;’:
< $93. Summary of Generation Scavenging’s Performance ;.:*
* -
< i:\’
Table 5.12 summarizes our findings. See Appendix D for a more detailed description. N

o, Generation Scavenging offers outsanding performance: g'z"

wy o
" * At 3%, its CPU overbead is three times lower than deferred reference counting, its o

NS NCS

15 "

nearest competitor on a compiled Smalltalk-80 system. The overhead is so low that _

N T
1:: designers of high-performance systems who formerly shunned automatic storage recla- ‘:;'t
. % ’.'l:

R mation can now embrace it. s
2 £

X [Table 5.11: Generation Scavenge Store trapping overhead in SOAR. | l:f.“,

R T Benchmark | Benchmark store store store N

N ’ Name Cycles traps trap trap :ﬁ}:

N .l _ cycles overhead é‘

' decompiler 2,958,219 0 0 0% - 4

rag] | alllmplementors | 2,257,051 1 100 0.004% A

s | classOrganizer 2,959,728 14 1,400 0.05% O

e  compiler 1,117,660 7 700 0.06% R

- | printDefinition 75,319 1 100 0.13% oot
" i printHierarchy 119.040 12 1,200 1.0% By
. maedian 0.05%
o~ '..:\-“;
3 ' f
\ R "Q
“ XTI M o .y ~

By Table 5.12: Sum_mﬂ of Generation Scauﬂg s Performance. '\-:\

" N ; Berkeley Smalltalk SOAR m:
= | execution model interpreted compiled %

‘4’.:5 | source of dana measurements simulations D

',’;\-; | processor MC68010 SOAR f:'::::

LI~ 1 cycle ime 400 ns 400 ns o

3  CPU time overhead U

s  Iesn | .5% 0.9% L4 y

: ' worst case n.a. 3.3% 5
‘,;3 . pause time (scavenge durstion) :;-__:::

2 mean 160 ms 19 ms g

o wOrst case 330 ms 28 ms RO
> peak main memory usage 200 KB 200 KB NS

3 backing store accesses 0.15 n.a. ¢«

. ) " ..
% W
X -‘\f
; ":\.-
" N
1) \:_-
;:‘:: e e v e e e s R
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¢ The short pause times for Generation Scavenging are a good match to an exploratory
programming eavironment. Since people have difficulty noticing pauses of 100 ms,
they will not be disturbed by pauses of 28 ms.

The 200 KB of main memory needed for temporary data exceeds the space require-
ments of most older algorithms. However, given the state of the an in computer
memory hardware. 200 KB of overhead seems reasonable for a system with 2 MB of

main memory.

RARATT WS | oo = g g S Al
. .. P
R )

. 1deally, automatic storage reclamation should not cause any page fauits. Even without
any provisions for locking new and remembered objects in main memory, BS averaged

only 1 page fault per seven scavenges.

§.9.4. Performance Evaluation of Direct Addressing on SOAR

LA A TR ML AN

Because Generation Scavenging includes compaction, the usual indirection through an

A

object table is unnecessary in BS and SOAR, making them the only Smallualk-80 systems
without object tables. The indirection through such a table is sometimes overlooked when
evaluating reference-counting reclamation, but it can be a bottieneck; a typical Smalltalk-80
system accesses the object table 1.2 times per bytecode [UnP83]. Assuming SOAR per-
forms as fast as the Dorado (300KB.c/.5), SOAR would access the object table 360,000
times per second. The absolute minimum table access would be a single load instruction.
Assuming 400 ns per cycle, such an indirection would take two cycles. or 800 ns. At
360.000 table accesses per second, that would be 0.29 seconds of indirection time for each
second of processing time. Discussions with Deutsch suggest that further optimization pos-
sibly could halve this overhead. In other words, an object able would slow SOAR by 15%
© 29%.

N \
Although we eliminated the object table to improve performance, there is one NAAY

Smallslk-80 primitive operation that runs much slower without it. The become: primitve

U ML LI S IRy s, o 0 PRI PPN RN :. RN ;.:;{.*\’-';.
NOUIIRICOIN I AR N ST S0 Je 3 ML R ;
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exchanges the identities of two objects, so that all pointers to the first object are redirected to
the second, and vice versa.

A Smalltalk-80 system with an object table can perform a become quickly by exchang-

ing object table entries (Figure 5.9). A system without an object table (such as SOAR) must

search objects and exchange pointers. Although we have devised strategies to limit the

-

search, a worst case become still involves a search throughout virtual memory. Such a long

pause is unacceptable. We avoided this problem by rewriting the software for Smalltalk-80

data structures to avoid becomes. To establish the feasibility of this approach, we added new

U AR

AT

Collection classes that mimic old ones without resorting to becomes (Figure 5.10), then

modified the macro-benchmarks to take advantage of our become-less classes [Wal83).

el EX

Table 5.13 presents an analysis of this change on system performance. The printDefinition

Y
vy

benchmark shows that this change has a negligible effect on a benchmark that does not do

AN

' ueae.copyofself ieﬁwome:eopy

A/

i | obj table ) table] | obj table j tabl

Ly

Fa

'

A8 ST
\

—_”__éiim_ﬂ
N
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B
—

YaNh

VNTT

Figure 5.9: Growing with become. The sequence above illustrates how a Smallialk-80 set
employs become 10 grow. Inirially, the set is {2, 3, 5] and we attempt 10 add 7 w0 it. The set
creates a larger copy of iself and uses become: to replace the original set with the larger
version.
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Figure 510: Growing without become. The sequence above illustrates how our modified
sets grow without resorring 10 become:. The consenss are stored in a separate array. To
grow, the set allocates a larger array, initializes it, and redirects an internal point to the
new array. We have replaced costly implicit indirection with explicit indirection that incurs
cost only when needed. This is in keeping with the RISC philosophy.

Table 5.13: Performance impact of eliminating becomes.
.| benchmark # becomes duration duration cycles
w/ becomes | w/o becomes | saved
(cycles) (cycles)

printDefinition 0 75,475 75,317 0%
compiler 7 1,383,201 1,127,658 18%
decompiler 38 4,045,641 3,006,974 26%
printHierarchy 3 165,997 119,574 28%

any becomes. But, our efforts to eliminate becomes from programs that did use them were

handsomely repaid with an 18% to 28% performance improvement.

Although we have eliminated becomes invoked by the sysem classes, the SOAR pro-
grammer must either shy away from this primitive, or be prepared to pay a stiff performance
penalty. Forcing the user to worry about the efficiency a primitive operation runs counter
the philosophy of exploratory programming environments in general and Smalltalk-80 in
perticular. However, we believe that the become primitive is 5o »intrinsically
expensive—fast becomes require a level of indirection that slows down many frequent

operations—that the effort to accomplish a become should not be hidden.
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We have also estimated the impact of indirection on code size. An Object Table would

require an extra instruction to load or store a literal variable, and one indirection in the
method prologue (for the receiver). (We are assuming that many indirections will be optim-
ized away, as in Deutsch and Schiffman’s system.) Table 5.14 presents our analysis under
these assumptions. The extra code for an object table would add only 2% to the size of the

system.

$.9.5. Architectural support for Storage Management

The SOAR chip supports demand-paged virtual memory with restartable, fixed sized
instructions and a page fault interrupt [SKF85]. An off-chip page map translates addresses
and mainwins referenced information. The silicon cost for virrual memory is about 20 sup-
port chips including the page map. Figure 5.11 shows that the SOAR host board hides the

page map access time in memory access time [BID83).

“To support Generation Scavenging, all pointers include a four-bit tag. When a store
instruction stores a8 new pointer into an old object, a special trap occurs. The software trap
handler then records the reference. The tag-checking PLA has 8 inputs and one output, and
occupies about 0.1% of the total chip area. The cost of the extra control logic to handle the
trap is harder to measure. As mentioned in Chapter 4, tagged store instructions occur so

rarely that even this small cost cannot be justified.

l Table 5.14: Static cost of ob!‘ect indirection.
4654

method prologues
literal variable loads 3532
literal variable stores 254
| total image size 1,500kB *
relative cost of additional code 2.25%
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instruction attempts to free it). we copy the record to the heap and adjust the references to it.
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) Pty
BN
:::;'." ::
offset into page e
RAM e
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——> | pagemap physical page # .:-':\_
virtual N
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i L -
page # to RAM
| )
I ;
access page map |
i
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Figure 511: Fast address wanslarion. The SOAR system has adopted the same technique I:::_L: 1
as the Sun 68010 workstation to perform address translation without hurting performance. Pt
It hides the translation time in the address multiplexing delay for the dynamic RAM chips. O
On each memory access, the low order address bits that specify the offset into the page are ‘,:
sent to the memory while simultaneously reading the page map. The physical page number A
is then sent to the memory as the second piece of the address. A virual memory with one
segment per object could pot run as fast because the offset into 2 segment is pot identical to e
the least significant bits of the physical address. Consequently, no portion of the virual ad- SN
dress can be sent immediately to the RAM chips. '_.;:.::
LY
o
5.9.6. Generation Scavenging and Activation Records wiate
UK
A
We have simplified this chapter by deliberately omitting activation records. In this :‘_
section, we outline the problems caused by activation records in Smalltalk-80 and our solu- o
M
sl
tons to them. Activation records present a probiem because a Smalltalk-80 program can v
manipulate them like any other object. For instance, a subroutine can obtain a pointer to its 1:::.7:
" activation record and place it in a global variable. After the subroutine returns, another rou- 3:::'-\. y
l'\' ¥
tine can inspect the activation record via the global variable. Since SOAR activation records :.~
h2GR
are kept in the register frame stack, extaordinary measures are required to preserve this ﬁ';':
:-'__r “
information. When a Smalitalk-80 program creates a reference to an activation record we :;:::'.;
- k. ‘n-’l
mark it as non-lifo. When a non-lifo activation is about to be destroyed (i.c. when a rerurn -
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2
3‘3 Thus, the steps are:
1) Detect the creation of a non-lifo reference 10 an activation record, then mark the
) ;3 activation record as non-lifo:
:".. , A non-lifo reference can be created by storing a pointer to an activation record or by
~a returning such a pointer as a result. We have allocated a distinct tag for activation
:E records (context, or 1111). A tagged store instruction will trap when storing such a
:: 3 pointer. As for returns, the SOAR compiler generates a trap instruction before each
:: "return that checks the tag and traps if needed. The trap handler sets the high-order bit
\ ;:.é; of the activation record’s return address. This marks the activation record as non-lifo.
< Meanwhile, the reference is added to a software table so it can be updated later.
, 2) Detect a return from a non-lifo activation record, then copy it and update any refer-
." ences to it.
~ The return instruction traps if the retumn address has its high-order bit set. This trap
:j bandler then allocates space in the new area for the activation record, copies it, and
:‘ updates references to it. At this point there is no need to trap further stores, so the
‘
, : reference’s tag is changed to new.
; g\ We have extended this str.ategy to include blocks. Smalltalk-80 blocks implement con-
‘\'f:f ol structures by allowing one routine to control execution in another’s context. Fre-
" quently, a block is created, passed down the call chain w a subroutine that repeatedly
;E, invokes the block and then reums. Thus, we must impose a minimum of overhead on this
A

case, while handling non-lifo references to blocks. In other words, aithough a block is an

object that refers to a context. we do not mark the context as non-lifo until the block itself

/)
[4

h

becomes non-lifo. This is accomplished with the same mechanism outlined above; using the

re

e

context tag for block objects. . .
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§.9.7. The Potential Problem of Premature Promotion

Recall that Generation Scavenging is based on the assumption that the longer an object
survives the longer it will remain alive. Therefore, when an object attains a ripe old age, it is
promoted from the new generation to the old. At this point, the system assumes that the

object is immortal and ceases attempts to reclaim it. For this reason, we call the promotion

>y
v

a

o

process tenuring. However, in some cases the object may die shortly thereafter and waste

AR YR
A

space long after its useful life.
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At first glance, one would expect dead tenured objects to waste backing storage, but
not main memory. They would seem to get paged out to make room for tenured objects that
remain alive. However, because an object is so small relative to the size of a page (14 vs.
1024 words), a page could easily contain just a few live objects among many dead ones.
This internal fragmentation could tie up much more main memory than is actually needed
for the live objects. In this manner dead tenured objects can increase the number of pages in
the working set.

How severe is this problem? We plan to reclaim dead tenured objects once a day by an
offline reclamation program. How many will build up in a day? We won't know untl we
measure the lifetimes of objects over hours of elapsed time on a high-performance system
like the Dorado or SOAR. Chapter 6 has a8 more detailed discussion of this issue and stra-

tegies for coping, should it turn out to be a problem.

5.10. Summary of Reclamation Algorithms

L A
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Table 5.15 summarizes our results: both Deutsch-Bobrow deferred reference counting
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and Generation Scavenging perform well enough for an advanced personal computer. The
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advantages of Generation Scavenging over deferred reference counting are:
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e itreclaims circular structures,

s itincludes éompnctiou. and

. it uses less than a tenth of the total CPU time.

\
Y
a .
8 5.11. Conclusions
: The combination of generation scavenging and paging provides high performance
: sutomatic storage reclamation, compaction, and virrual memory. This method of storage
‘ L
! management has proven its worth daily in Berkeley Smalltalk, which has supported the
s SOAR compiler project, architectural studies, and text editing for portions of this chapter. "_J-:.:‘
. e
L] -..U.*q:
) The algorithm we have presented may not accommodate objects that live for a medium p:-_':\‘\{;j
g [\ )\ .
E amount of time; they may increase the time overhead or cause thrashing. Measurements L}“{
& oL Y
3’ must be taken on high-performance Smalltalk-80 systems to understand the behavior of :ﬁ;x‘
vad.s
2 these objects. § ‘4“::
. . kiﬂ-j
-~ pacaie q
) e
X Table 5.15: Summary of reclamation strategies. | 2
N g Utime  mainmemory paging pause pause :[:" "t
i for dynamic  L/Os time  interval Fatat
1 objects (sec)  (sec) % m
v | page it no reclamation | ? 1SKB ~50/s f N
\ " immed ref. count 15% -20% 15KB ? 0 - : YDA
\ (compaction) 1.3  60-1200 Y0NS
3 deferred ref. count 11% 40KB ? 0.030 0.30 ' +5Y
(compaction) 1.3 60 - 1200
\ mark and sweep 25%-40% 1900KB 90/gc 4.5 74 ~rd
Ballard 1%* 2000 KB 0 0 - N *tg
\ Generation Scavenging e
3 BS 2% 200 KB 1.2s 0.16 16 ' \
SOAR best case 0.3% 170KB 0 0011 4.0 -
SOAR average 0.9% 170KB 0 0.017 20 t‘ﬂ
' SOAR worstcase | 3.3% 170KB 0 0025 1.1 R
: ’ G
¥, [ARREN
. ® Ballard's Smaiialk-80 sysem used interpretive execution. Although ssing & VAX 117780 it ran the compiler ) o
mucro-benchmark five times slower than Deutsch’s deferred reference counting dynamically compiled Xerox ST6BK system o
{BaS83, DeS84). Ballard's sorage reclamation slgorithm may well excesd 7% overhead on a compiled Smalltalk-80 syswem. POa
. . [
N Rl
2 5
” R
-
] ;2;‘5
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High performance storage reclamation relies on two principles:
*  Young objects die young. Therefore a reclamation algorithm should not waste time on
old objects.
*  For young objects, fatalities overwhelm survivors. Copying survivors xs much cheaper
" than scanning corpses.
Careful consideration of the virual memory system is essential. Generation Scavenging
combines these lessons to meet stringent performance goals: low time overbead (2% in BS,
3% in SOAR), imperceptibly shon pause times (160 ms in BS, 27 ms in SOAR), and a low
page fault rate (1.2 faults/sec in BS). Meeting these goals costs 200 KB of primary memory,
but the result is worth it; a high-performance computer system with fast sutomatic storage

reclamation.
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; Chapter 6
3 p
¥
! Scavenging Data with Intermediate Lifetimes
. T
M 6.1. Introduction o
; o]
y . . . C . faia?
: What happens if the age of an object fails to predict its lifetime? An object that sur- ;:'_E:;
' ; vives long enough to be promoted but succumbs shortly thereafter will waste storage in old i
A7
- space. This chapter contains a detailed description of the problem. how we have attacked in ,"‘:?.:
ol l:-l;f:
. Berkeley Smalltalk, some proposals for extra generations, and an analytical model that sheds ::-i;-;
W F"":C'
some light on the effect of various parameters on performance. b ‘,
¢ R
. 6.2. The Tenuring Threshold “._{
o B R Y
. .).\'.:
* When should Generation Scavenging tenure an object? Since we have observed that . z’;ﬁ}:
A
S young objects are likely to die and old ones are likely to persist, our algorithm tenures an -(::j‘_{i
0y A
s object that lives long enough. The casiest way to measure age is to count the number of j:;:j
e
Y 5%
scavenges an object survives. Thus. each object contains a byte that is initialized to zero and ' i -
7, »,
- is incremented on each scavenge. If an object survives for a certain number of scavenges, it ::ii
. ey
" gets tenured. The problem is to choose this threshold. If it is too small, that is if Generation 3:-{:‘
2 Ny
’ Scavenging tenures objects too soon, a large fraction of them will die shortly after receiving U
v Ny
N tenure. Tenured garbage wastes space on backing store, and more importantly, may slow the ;~::;;:.".-‘|
system with extra page faults by mixing dead and live objects on the same page. On the i"*E:,
other hand, if the tenuring threshold is too high, long-lived objects will pile up in the new BN
A area, increasing the amount of data that must be copied for each scavenge. This will ,,-E:;
: .ﬁ '\ 2
N increase the pause time and the CPU overbead for storage reclamation. Thus, the tenurin R
. g
threshold must balance the increase in page faults caused by tenured garbage against the 3;-::
N
extra pause time caused by scavenging long-lived objects. l’".:g
%
b N
LA et
-
v ;:‘_;‘5
\ 00N
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In Berkeley Smalltalk, we have included a feedback-mediated adaptive algorithm to
set the tenuring threshold. The algorithm examines the amount of data that survived the pre-
vious scavenge and adjusts the tenuring threshold accordingly. The current implementation
Limits the tenuring threshold w 64, where it remains most of the time. On SOAR, a tenuring
threshold of 64 would mean that an object would have to survive for more than a minyte to
be tenured. Since the response time for most requests is much smaller than a minute, setting
the tenuring threshold to 64 would allow Generation Scavenging to reclaim the bulk of the
garbage online.

We have performed an experiment with BS to better understand tenuring. Since the
objects of concern are those that live for relatively long times, a typical interactive session of
several hours duration would be ideal for characterizing tenuring behavior. Berkeley
Smalltalk's poor overall performance, 10% of a Dorado, prevented us from gathering data
from a typical interactive session. Lacking a Dorado or SOAR chip, we settled for a syn-
thetic wotkload. our imge merely ran the decompiler benchmark twenty times. 1'he inter-
val between scavenges was held fairly constant while varying the tenure threshold. A total
of 20kw was allocated in the new area (plus 20kw for each survivor area). The feedback
mediated scavenge algorithm used an average of 18.7 kw before each scavenge. Table 6.1

gives our results.

Figure 6.1 shows the relationship between the tenuring threshold and the number of
bywes of data that were wenured. As expected, the number of objects achieving tenure
decreases as the time required to obtain tenure increases. In addition, there are two knees in
the curve — aiso just as expected. The first knee, at a tenure threshold of one, merely
proves that most objects die very quickly. The reason is that a threshold of zero means that
every object gets promoted—even though it may be only milliseconds old—but a threshold
of one means that an object that gets promoted must be older than the time between

scavenges. Since the scavenges occurred every 3.5 seconds, this knee shows that many
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N ‘s
o’ (A '__.:
; ! ~Table 6.1: Results of BS tenuring experiment. E..;-j
. tenure #gs's total total avg. max CPUtme —Hﬁ
» threshold time tenured surv. surv. overhead ﬁ:"
N (# gs's) (secs)  (kw)  (kw)  (kw) (%)* AL
N (0 | 9 340 360 23 43 0.6% oy
p i 1 83 290 17.0 29 43 0.8% p 5\:
A . 2 83 310 16.9 30 43 0.8% ]

y 3 83 300 16.7 32 45 0.9% S

) 4 83 290 37 34 48 0.9% "

:" 5 83 300 37 34 4.6 0.9% \\':,*- ‘
\: 6 83 300 39 35 4.6 0.9% ;'_'.‘:?t
N Lo 83 280 37 35 47 1.0% ¥4
! 8 83 290 36 36 48 1.0% ot
. P16 83 290 29 38 49 1.0% ——d

2 32 8 300 24 42 69 1.1% Y
) 64 83 290 20 51 64 1.4% ooy
“ sk
- objects live less than 3.5 seconds. sy

The second knee, at 4, indicates that many objects live for more than 3x3.5 seconds but ;Z

S
e et
4 [

3

less than 4x3.5 seconds. This is not surprising because each iteration of the benchmark took
. about 12 seconds. The only objects tenured at a threshold of 4, were those that survived for

more than one iteration. These were the text lines printed on the screen from the bench-

marks. This experiment confirms our understanding of tenuring; any object which outlives
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the product of the tenuring threshold and the inter-scavenge time gets tenured.
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Although minimizing the amount of tenured data saves (virtual) memory space and
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..
¢

NP

,2rs

N improves paging performance, it forces the scavenge operation to copy more survivors,

.
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which takes more time. The surprise is how small this increase is. In this experiment, the

v

%Y

~ quantiry of tenured data—which is principally garbage—decreased by a factor of 23, while

A
ﬂi?¥
»

AL

O the time spent on scavenging merely doubled.

v .
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Unfortunately, we would need measurements of a fast Smalltalk-80 system to com-

.
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plemely predict the effects of tenuring. Tenuring affects objects that live for minutes or
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hours. These objects are used by people. not programs. For example, the objects that

. * Dased on 24 cycles ® survivor + 3500 as denved in Section $.9.2.1.
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*j comprise 3 window on a screen would have lifetimes of minutes. Because their lifetimes
k. depend on how people use them. we cannot extrapolate from a slow Smallalk-80 syswem
E; such as BS to a fast one like SOAR.
:;'“ Although we cannot characterize the problem, we can characterize some potential solu- ¢
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Two generations with fast tenuring. This is the present configuration. Deutsch has
estimated that data structures used by a typical window. for example a browser, con-
sume 15 KB of memory. At 20 cycles per word, that means that it would take 30 ms to
scavenge the data for a window. Thus, assuming 150 KB of new space, every
untenured window would add 3% to the scavenging overhead, limiting the number of
untenured windows to about 4. If the rate of window creation is slow enough, a system
that tenures objects so fast that every window gets tenured may be practical. On the
other hand, if many windows are created and immediately destroyed (as in the case of

error message windows) it may be important to retain a few untenured windows.

Two generations with slow tenuring. Assume we dedicate a megabyte of physical
memory to new objects. Then the system can run seven seconds between scavenges.
That means that a more data can be scavenged without incurring incurring excessive
overhead. In fact, the limit becomes the scavenge’s pause time, not the percentage of
overhead. Suppose that we accept a fifth-second pause every seven seconds. That is
long enough to scavenge seven windows. This may be a sufficient number of
untenured windows to avoid tenuring garbage. (Interestingly, seven is roughly the size

of a human short-term memory.)

Three generations with fast tenuring. Suppose we add a third generation in the middle.
Some of the space for the third generation can be obained by reducing the size of the
youngest generation from 100KB to S50KB, which tripies the scavenge overhead to a
(still acceptable) 3%. A middle generaton of 300KB of physical memory can contain
ten untenured windows (in each semispace). The time for a scavenge of the middle
generation would be about 300 ms. This option can support about the same number of
windows as the two generation, slow tenuring one. but with slightly more space and

significantly less time overhead.
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o
4. Three generations with slow tenuring. Suppose we add a large third generation, but EE:‘E
use virual memory instead of physical. Scavenging this middle-aged generation :.‘-:" 4
would then incur page faults and cause a perceptible pause, perhaps one to three ”{:
seconds. However, 30 windows could be created before filling (the 1/2 MB semispace N
of) a one megabyte generation. Thus, these long scavenges would be infrequent, and il
2 acceptable. E‘}:‘_
ot
- 5.  Four generarions. SOAR's ugs support four generations, so we could combine the E;E
. above schemes. The youngest generation would be small, locked into memory, and i:'
frequently scavenged. An object surviving two scavenges would be promoted into the ‘;:
,, pext generation. This would also be in physical memory, but larger. This generation .‘E;.
. would bold the newest few windows. Thus, this is important if many windows are ;;
' \ closed immediately. The third generation, would be about a megabyte, and located in 'E.j
,. E virtual memory. Most windows and medium lifetime objects would reside here. They :é

could be reclaimed without a complete reorganization. Finally, permanent objects like

1
%

[}

K2 the square-root routine would reside in the oldest generation, which would  be :‘
3; reclaimed and reorganized offine. Table 6.2 summarized these proposals. More work ;:
_‘ is needed to measure the behavior of these medium lifetime objects and to design "3
:: appropriate two- of three- generation parameters and reorganization algorithms. .é::}-;
= =
- 6.3. Analysis of a Single Scavenged Generation wemd
,, w0y
,‘ How much physical memory must be dedicated to new objects? In this section we ti
': » present an analysis of a two-generation system where one generation is scavenged (New) :{E:
*. and the other is reclaimed offline (Old). Since the Old objects are reclaimed offline, we will ‘ ;
h E':' only analyze the New generation here. Table 6.3 introduces the. relevant terms. The first E’i'.;
: constraint we face is to keep the scavenge pauses small enough to be unobtrusive. The data ¢ E:E ’
,’ on scavenging duration in the previous section showed that the length of a scavenge can be ,:':‘ .
%
v A
e 2%
§ ':' , AT SIS ;-,, LA .j_ A ,\,ﬂ,".-:.-._;.‘_{\'-'.:f.fq'\’.- .-s '.;J',:.',c- '-r.‘.f,:r,;.:.-_:f,:.-,;.r;r;f.'f:_q-.:;.r:'\‘
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: Table 6.2: Sum of tenuring pro
_generation assistant I associate full I emeris -
of mem hysical virtual f
Proposal 1. Two generations, fast tenuring.
. creation area (KB) || 140 4,000 !
© survivor area (KB) 17 disk ;
pause time (ms) || 30 60 |
scavenge time (%) 3% ? i
i memo 170 2,000 7
Proposal 2. Two generations, slow tenuring. -
creation area (KB) || 420 4,000 '
. gap time (sec) 3 ? |
| survivor area XB) || 170 disk |
. pause time (sec) 0.30 60 ;
scavenge time (%) 10% ? |
primary memory (KB) || 760 2,000 ;
‘ Proposal 3. Three generations, fast tenuring. |
. creation area (XB) [ 140 0 4,000 |
' gap time (sec) | 600 ? |
_ survivor area (KB) 17 150 disk [
. pause time (sec) 0.030 0.30 60 :
scavenge time (%) 3% 0.05% ? |
primary memory (KB) | 170 300 1-3MB
Proposal 4. Three generations, slow tenuring. |
creation area (KB) || 140 0 3,000 ]
gap time (sec) 1 2,000 ? |
survivor area (KB) 17 500 disk ;
-pause time (sec) 0.030 “10 60 '
scavenge time (%) 3% 0.5% ? .
primary memory (KB) 170 500 0.5-25MB .
Proposal 5. Four r generations. !
creation area (KB) || 140 0 0 3,000 :
gap time (sec) | 600 20,000? ? :
survivor area (KB) 17 150 500 disk ;
pause time (sec) 0.030 0.30 10 60
scavenge time (%) 3% 0.05% 0.05%" ?
primary memory (KB) 170 300 500 0.5-25MB
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f — Table 6.3: Quantities to analyze s single generation.
| i Scription | units
| ; _ constants
| et SOAR cycle time seconds
| se scavenge effort: avg. cycles per scavenged byte cycles per byte
. abw allocation bandwidth: rate of new data instantiation | bytes per second
ﬁ independent variables
’ surv size of each survivor area bytes
| Eden | size of new object creation area bytes
; s dependent variables
: ! mem total memory used bytes
|
: i pause length of scavenging pause seconds
' 89 _gap between scavenges seconds
l i ov fraction of CPU used for scavenging this generation | fraction [0, 1]

predicted from the amount of data surviving the scavenge.

f pause = (sexctyxsurv 1
- Let’s test this with an example. Plugging in typical SOAR parameters cr = 400ns,
se = 5.5cyc /byte, and surv = 8,800byzes

pause = (S.5%400ns )x8,800 = 19ms : (1E)
which matches the simulated pause time of 19 ms.

Reducing the tenuring threshold will limit the quantity of data that survives a scavenge

by promoting the oldest surviving objects. Once in Old space, they need not be scavenged.
But, as discussed in the previous section, too much tenuring can provoke thrashing. Thus,
we recommend choosing an acceptable pause time (perhaps from 10 ms to 100 ms) and
adaptively adjusting the tenure threshold to maintain the corresponding amount of untenured
data.

The next step is to calculate the amount of memory devoted to newly-created objects.

Let's assume that the rate of object allocation is fairly constant. Then

2

)
|
:
3 =
: sap abw

For example, in the growth rate experiment in the previous section, we found that the com-

piler benchmark generated 17,000 words per second. Thus, abw = 68,000bvres /sec, so for
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N Eden = 150,000, '.r:::‘
N :.\ '-
3 150.000 -
D 8P =5 000 = 2.25ec (2E) ‘\::x_;
: In other words, with 150 KB for new objects, SOAR could run for two seconds between suc- ::::‘.‘J-
N : e
'
i cessive scavenges. NN
N Although —P2__ we will use a simpler approximatio :..j
W ,ov = . i 1 P
N pause +gap v mp PProxi o, N
* R
N S
oV = ﬂ (3) .: ey
'. sap —=—}
" for our analysis. (This is a reasonable approximation because we only care about systems AR
. with low overhead.) Continuing with our example, we can use equation (3) to calculate the o
s N
: time overhead:
.
’
: ov = o 0.86% (3E) .
3 Since we have expressions for the pause and gap times, we can combine (1), (2), and -
E (3) to express the overhead in terms of memory allocations: {I&t::
o ~
|\ :.‘d:\
2 surv_ ov @ ::}:E
N Eden (sexctxabw) .'-;\
Al y¢
i Suppose we need to decide how much memory to allocate for Eden in SOAR: h.,
] e
4 38600 _ ov PR,
< Eden = 0.5 - o
. Se Y
L LSS
L Eden xov = 1300KB (4E) el
- So, for 2% overhead, we would allocate 65 KB t Eden. This would total ::.ﬁjz_ﬁz
5 2x8600+ 65,000 = 82KB of main memory for New objects. R
o For the general case we can combine .
N I
N mem = Eden + 2xsurv ) W
% with (4) to calculate the total memory required. Suppose we built the system as described jl::','.':
¢ i: .
¥ above, only to discover that it tenures too much garbage. The first step to cut down on A
a R
E: tenuring would be to boost the quantity of untenured survivors. This will increase the pause E:j::.“_'
% X
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time for a scavenge; equation (1) says that surv = ﬁ. Thus, 50 KB of survivors will

result in pauses that last 100 ms. The increased pause time will drive up CPU overhead
vnless we dedicate more memory to Eden. Suppose we allow CPU overbead to rise to 5% to

economize on memory, then equation (4) gives the size of the Eden area required.
50,000 _ 0.05 _
Eden  0.15

50.000
0.33

Equation (5) then supplies the total memory for this generation:

033

Eden =

= 150,000

memory = 150,000+ 2x50,000 = 250,000 (SE)
6.4. Analyzing a Middle Generation

What if this is still not enough space for medium-lifetime objects? A third generation
can be added in the middle. This results in a system with three generations: a generation for
evanescent objects (Generation | }. a generation for medium-lived objects (Generation 2),
and a generation for permanent objects (Figure 6.2). Assuming that we keep Generation 2 in
primary memory, how are we going to divide memory among the two scavenged genera-
tions? The equations in the previous section specify the behavior of a single scavenged gen-
eration, so we can apply them to each of the two scavenged generations, using subscripts to

indicate the generation. Then, by superposition from (4):

(se xct\xabw Jsurv, (se xctoxabw y)surv, 6
Eden ] M Eden 2 ( )

oV mov +ov, =
For example, assume that each window uses 15 KB of data, and that we want to be able to
support ten windows without tenuring. Then surv, = 150KB. If we open one window per

minute, abw ;= 15 % = 250byres /sec . (Se and ct are the same for both generations.) Thus.

1300 74
OV BOV 40V = £d¢n|+Ed¢_n-.. (6E)
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>
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Surv \ - \\ 2
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.c"
age < | min lIminSage<]1hr 1hr<age SN
imermediate results window data system code & data
created by programs created by user created by Xerox

Figure 6.2: Diagram of a system with a middle generation. Objects are created in the Eden
area of the Assistant generation. If an objects lives through several scavenges in the Assis-
tant survivor areas, it gets promoied into the Associate Eden area. )f it then survives

scavenges between the Associate survivor areas, the object receives tenure into the Emer- e
itus area, where it is exempt from online reclamation. Ideally, the parameters would be set o
10 keep shon-lived objects representing ibtermediate results in Genperation 1, j}::.},.:
medium-lifetime objects used by windows in Generation 2, and long-lived objects like the R
square root routine in the Old generation. :}:}:{c*
L
Now, let’s minimize the total tme overhead given a fixed amount of memory to divide :-::::{:f
' d '.'-‘:-"'l'
among the two Edens. From (6), substituting Eden, = Eden ~ Eden, and differentiating with ’\j::::‘
."\'-::‘-:. {
respect to Eden ;: frI
d (ov) (se xcr \xabw )surv, (se yxctyxabw j)surv , .
=- +
(d Eden ) Eden ? (Eden —Eden ,)* 7 "
Setting —4(Y) __0, and solving for Eden ,, we get a,
(d Ed‘n l) E‘
T
Eden 1 Eden, 1 NS
= and = -‘_\ ‘..v-\
Eden V(se yxct xabw y)surv 5 Eden V(se ;xcr xabw |)surv , (8) e
I+ 1+ e
V(se ;xcr xabw )surv | V(se yxct yxabw y)surv atats
RO,
ORI
t"*
o
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Continuing with our example,
Eden 1 =81% and Eden, . 1 19%
Eden | V14 Eden | ¥1300 (8E)
31300 374

Given an optimal split, we can plug (8) into (5) to find the minimum amount of oves-

bead for a given amount of memory:

2
ovxEden = [\I(u 1Xct  xabw )surv , +V(se 2Xct gXabw )surv 2] 9
For our example,
ovxEden = [VT300+¥74 ) = 2000 (9E)

So, for 2% overhead, 100 KB of Eden would be needed. Adding in the survivor areas, 420

KB of physical memory would be used for scavenging. What about those long pauses for

Generation 2?7 From (1), pausey=150,000xsexct = 300ms. From (5),

Eden, . 0.19x100KB
abw, 250

gap = =76 secs. Thus, by adding a middle generation, we have made

it possible 1o scavenge more untenured data by increasing the gap between long scavenges.
This lets us keep 160 KB of untenured data in 420 KB of main memory at a time cost of
2.0%.

We may decide that minimizing the total CPU overhead is not as important as reducing
the frequency of long pauses. In that case, we can abandon (8) and use (1) and (2). Suppose
we can only toleratte a 300 ms pause once every 3 minutes. Then, using (2)
Eden , = 180x250 = 45KB. Assuming we ﬁse the same amount of memory as above, that

leaves 55 KB for Eden,. This results in a 0.81 second gap for Generaton 1. With these

.19 300 -
parameters the total overhead is 810 180,000 2.5%. Of course, this is worse than the

optimal overhead of 2.0%.
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6.5. Controlling the Tenuring Threshold

Objects must be tenured to avoid excessive pauses caused by scavenging too much
data. The problem is to set the tenure threshold given the survivors from the past generation.
\\:?e propose that a scavenge also maintain a table giving the total amount of surviving data
for each age. Such a table could then be used to predict the amount of data that would be
promoted for any given tenure threshold. Building this table would add about 10% to the

scavenge time.

6.6. The Cost of an Offline Reorganization

To better understand the time required by an offline reorganization, we measured one
on BS, on a diskless Sun 68010 workstation. Table 6.4 gives the results: this reorganization
software is slow; 1200 memory cycles are expended in user mode on each word. Address
space limitations of early Suns forced us to reorganize the old objects by copying them to a

file, and modifying them in the-ﬁle. Thus, every time a word is read from old space, a file

read subroutine is called. Current Suns and SOAR have 16 MB of address space, more than
enough to hold a copy of the 1 MB o 2 MB of old space. Replacing file read/write software
with virtual memory hardware should result in a large speed up, and a sub-minute reorgani-
zation seems feasible.
‘_‘-l"able 6.4: Measurements of an offline mganization on BS.

user ime | 116.7

system time ! 46.1 sec

real ime I 179 sec

idle time ; 16 sec

CPU utilization ; 90.9%

reads 3 464

writes ; 492

page faults ! 14

initial old size ' 245,036 words

final old size : 231,207 words

bandwidth ‘ 480 pus/word

16-bit cycles/word 1200
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6.7. Summary )
Objects that live long enough to be promoted but die shortly thereafter can present a
problem for Generation Scavenging. To study this phenomonon, we would need daa from

sessions on high-performance systems using Generation Scavenging. Since we do not have

i A T

the capability to perform these experiments, we have merely explored some solutions that

X

> v
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.
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can be adopted if necessary. The simplest strategy would be to tenuring threshold at a good

A%
s
a s e

compromise between time and space efficiency. If that did not suffice it might be necessary

]
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<
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o add one or two more generations.
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'133 Chapter 7
¥
|
:g. Conclusions
.' .
W]
!:‘ N
y ' 7.1. Conclusions
2o
3 . We have presented and evaluated the hardware and software design of Smalltlk On A
o RISC (SOAR). We undertook this effort to see how well the reduced instruction set com-
< puter style of system design would work for a software environment beretofore supported :’
W Cud
2 only by complicated virmal machines. It has worked very well indeed. A combination of e
_ S
L hardware and software strategies has allowed us to build a single-chip NMOS microproces- A
bk
"’ sor that will mawh the performance of an ECL minicomputer, despite a 5:1 cycle time han- s
& 20
) " dicap. With about half of the transistors of the MC68010 microprocessor, a 400 ns SOAR ,f'v":
'-i.'.l
i will run the Smalltalk-80 system 2.5 times faster than the 400 ns MC68010. With only one 5"4:
; =
’ 3-:... fifth of the transistors of the MC68020, and with a handicap of about a factor of two in cycle &;ﬂ
. el
g time, SOAR will outrun the MC68020. RISCs pay off for experimental programming :%z
: b
Nt
% 3
3 * ; M l i ‘.c *l
:‘ SOAR's performance comes at a price; namely, memory space. A bytecoded 32-bit N
: ‘ Smalltalk-80 image occupies a megabyte of memory. Generation Scavenging adds 200 Kb ;
~ to this, and compiling to a simple instruction set costs another 500 Kb. With current ?‘;
v, e
P\*\
‘_; hardware technology, the extra 700 Kb is a small price to pay for high speed. ::::
'Ca ' .-5::«
Py The most important hardware features are register windows and tagged integer instruc- ‘l‘:
kY tions. These two feawres nearly double SOAR's performance by reducing the cost of sub- T
- “ -
. . . . NS
: routine calls and typechecked integer operations. Other important hardware feawres 8 :,.:.:
* LY
N ) include byte inservextract instructions. two-tone instructions. forwarding, one cycle jumps -gf!:
. N
> and calls, and tagged immediate data. In the realm of software, our storage management ..\ﬁ
¢ hAS
: a:a
43 pN
-
x o o 2%‘
R R R R R R '
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strategies (discussed below), direct pointers, in-line caching. and compiling to a simpie
instruction set are essential. In addition to permitting fast instruction decoding, the simpli-
city of the base architecture enables us to add the language-specific extensions.

On the other hand, despite our best intentions. we included several superfluous features
in SOAR, including hardware support for storage reclamation, pointers to registers, paralle]
nilling, and shadow registers to aid trap handling. These are archirect’s raps because they
increase design time and potentially increase the cycle time without appreciable reducing the
number of cycles. These traps are baited with speedups for specific operations, and sprung
when real programs fail to perform the optimized operations.

We believe that the key to good performance is a willingness to migrate functionality
from one level of abstraction to another, viewing the system as a whole rather than as a col-
lection of layers. During the design process, we moved functions freely up and down the

implementation hierarchy from software t silicon © achieve good performance with

 minimal hardware. For example, instead of inwrpretation, we have chosen to burden the

software with compiling and debugging a simple instruction set that can be executed
quickly. Also, we have replaced microcoded instructions for infrequent operations with
software trap handlers. Our system was designed with an implementation technology in
mind; this is the opposite of separating the ;mhiwcmm from the hardware implementation.
We have developed an algorithm for automatic storage reclamation. Generation
Scavenging, that permits SOAR to be the first full-speed Smalltalk-80 system without an
object table. We have shown that, @ike many competing algorithms. Generation Scaveng-
ing requires no hardware support. In addition. this algorithm reduces the time spent on
storage reclamation o 3% of the CPU time. This is three times better than other
Smallalk-80 sysems with comparable performance. Finally, unlike traditional

reference-counting algorithms, Generation Scavenging can reclaim circular structures of

dead objects. Automatic storage reclamation is no longer an important source of overhead.
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SOAR represents a substantial improvement in cost-performance over previous
Smalltalk-80 systems. We recommend that anyone faced with the task of building a com-
puter for an exploratory programming environment consider compilation to a reduced
instruction set.

72. Future Work

At this date SOAR has been fabricated and. running at 800 ns., has successfully com-

pleted all of its diagnostics [Pen85b]. An nnforM critical path to memory needed by the
fast shuffie hardware has increased its cycle time from 400 ns to 510 ns. Samples has ported R
the Smalltalk-80 system to the SOAR simulator; the system starts up and displays its win- -j;
dows on the screen. Our goal is to run the Smalltalk-80 system on SOAR. We will then 3
measure the performance of the system to find any flaws lurking in our performance data.
One of the most interesting remaining tasks is to construct a debugger for SOAR that pro- T
vides all the functionality of the current Smalitalk-80 bytecode debugger. A Smalltlk-80 O
system running on SOAR with complete, source-level debugging facilities would demon- ‘ﬁ‘g
strate that the primitive level of the instruction set can be hidden from the user. Finally, hOYSY
Pendleton has proposed reimplementing a stripped-down SOAR with an optimized pipeline R0
in a more advanced VLSI technology to yield a very fast Smallalk-80 system. 5‘;‘:
One aspect of Generation Scavenging remains in dire need of exploration: objects with

an intermediate life span. If promoted too soon. they waste disk space and can degrade vir- .
wal memory performance. If promoted too late. they waste the CPU time needed to repeat- {t 5
':edly scavenge them. Adding a third, middle generation is a possibility. Further research Q.“f-‘
will require measurements of high-performance Smalltalk-80 systems with real users to [ K |

o0
obtain realistic actuarial data. shi%—
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Appendix A

Detailed Performance Evaluation of Individual Features

A.l. Introduction

This appendix contains detailed evaluations of the effectiveness of most of the features

in SOAR and a few proposed additions to SOAR. The raw data, instruction mixes, and exe-

2,
.‘{'.-‘Fa

8
»

&

b

B

2
A%

e

.
i
.

el ¥ ul
)
A

i)
a

tolt F);F
L] N
}}Iij' ’iA} .

J

il

[/

A‘sﬂf;.:,

K AL
R A

:. : ;

AN
';nl'}") '.'. .‘.'l' B

o, 0
LIS

L
1

R

cution time profiles on which these calculations are based are in Appendix B. To guide you :js.j
‘ e

through this section, we have reprinted part of the table of contents in Table A.1. There are "*-':.":-j
NN

two kinds of subroutines in SOAR: subroutines written by Xerox in Smalltalk, and subrou-

1

i

tines written by us in assembler for runtime support. Since these are written in two different ';{‘}-:g

o

languages, they may have different instruction mixes. For this reason, our tables of dynamic :%:‘-.

data have three columns: one for the routines wrinen in Smalltalk (ST), one for the routines P

written in assembler (system). and one that ignores the distinction (both). Since system code
consumes two-thirds of the time, the averages (used in the other chapters) wend to be dom-

inawed by the behavior of the system code. If this code were optimized, the numbers for €.

Smallalk code would become more important for overall performance. For static measure- \,‘:_.

N

ments, the Smalltalk routines dwarf the assembier routines, and we usually omit the assem- :'.’-:

bler ones. ‘\"r“‘..._.\_.‘
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A.2. Runtime Type Checking OO

“ta

Runtime type checking distinguishes Smalltalk-80 systems from those designed for .:'?

N

conventional languages. SOAR supports this with a tag bit for integers and tagged integer P

arithmetic and comparison instructions.
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Evaluating the Impact of Adding a
Compare-and-Branch Instruction
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How Imporant Are Tagged Immediates? .......ccoecceeens

Interpretation

Evaluating SOAR’s Byte Facilites
Evaluation of the loadc instruction

Barrel Shifter

Evaluating the importance of Multiply and Divide

Evaluating the In1/Out] Skip Condition ......ccceeececrerees

Evaluating SOAR's Conditional Trap Instruction

One-Cycle Traps

Evaluating the Performance Impact of Shadow Re-
gisters

Does SOAR Really Need Vectored Traps? .......cccoceenee

Procedure Calls

Evaluating SOAR s Register File Organization ............
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Performance of Inline Caching
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Storage Management
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A.2.1. How Important are the Tagged Integer Instructions?
To suppont tagged integers, SOAR includes tagged versions of the arithmetic and com-
parison instructions. To assess their importance, we first measure their frequency of use,

then calculate the performance degradation that would be caused by replacing them by

equivalent software instructions.

Y

A2.1.1. Tagged Instruction Frequency .

. -";.'- ‘.-.‘-:::.A.‘ %

Table A.2 lists the frequency of each tagged integer instruction for several bench-
marks. Zero rows have been omitted. Table A.2 above shows, for compiled Smalltalk-80
code, one out of every 8 instructions executed exploits SOAR’s integer tag-checking
bardware. Overall, the ratio is about ! out of every 11 insouctions. Interestingly, tagged
skips outnumber tagged arithmetic in compiled code.

Another way to measure frequency is to count the static number of each kind of tagged
insruction. Table A.3 shows that nearly 1 out of every 11 instructions is a tagged integer
instruction. This is slightly lower than the dynamic frequency of 1 in 8,

How often does SOAR detect an integer tag trap? As Table A4 shows, these traps are

quite rare; less than 4 in 1,000 tagged instructions trap.

A.2.1.2. Cost of Omitting Tagged Arithmetic Instructions

How much slower would SOAR be without integer tag checking hardware? Table A.5
shows the sequences that would be needed without it. under the assumption that no compiler
optimization is performed. (The feasibility of such optimization in the absence of type

declarations has yet to be demonstrated.) Table A.6 summarizes these data with cost figures.

The next step is to combine this cost data with the frequency data. Table A.7 lists the
time cost of omitting each type of tagged instruction from SOAR. The benchmarks would

take from 20% to 32% more time without integer tag checking hardware in SOAR.
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: 53
»  Table A2: Frequency of tagged arithmetic instructions, Part 1. 338
ST system both -
. g . test3plusd &_’::-_
e all insts 65.14% 34.86% 100% %Y
N add 33.07% 0.00% 21.54% r}_i*
3 trap! 0.00% 6.17% 2.15% a5y
loade 335% 0.06% 2.20% d
, -
o wal 36.42% 6.25% 25.89% &
- . A
) - testActivarionReturn ,-s."'}..
2 allimss____9721% 2.79% 100% o
Y sub 9.46% 0.00% 9.20% Fat
skip 9.46% 0.00% 9.20% s
" loadc 9.46% 0.00% 9.20% e
N wal 28.40% 0.00% 27.61% e
N testC lassOrganizer =] N
' allinss____ 41.06% 38.04% 100% be
S add 1.19% 1.19% 1.19% s
s sub 0.34% 1.73% 1.15% B
£ sll 0.00% 0.59% 0.35% -
1y skip 2.26% 1.31% 1.70% y
N 4 wapl 0.00% 2.49% 1.47% o
- | load 0.00% 0.31% 0.81% =
loadc 7.23% 0.10% 3.03% RN
; o3t
28 wal 11.03% 8.79% 9.71% 13
e e —— -
3 testCompiler .:&%
e all insts 33.42% 66.58% 100% >
- add 126% 0.89% 1.01% -
» sub 0.45% 1.17% 0.93% N
f- sl 0.00% 0.29% 0.19% . =
skip 1.94% 0.87% 1.23% o
2 oapl 0.00% 1.56% 1.04% et
. Joad 0.00% 1.02% 0.68% "
N loade 7.30% 0.26% 2.60% R
NG DOy
N total 10.92% 6.07% 71.69% o
1, '.- - '.\._ Y
. Kot
-
T ‘.::'-‘:
X e
e RN
S el
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[Table A2: Frequency of tagged arithmetic instructions, Part 2. N N
‘- ST system both NN,
testDecompiler \_ !
all insts 32.19% 67.81% 100% i
2dd 1.83% 1.00% 127% s
sub 047% 1.17% 0.93% et
and 0.09% 0.00% 0.03% ol
sl 0.00% 0.10% 0.07% s
sa 0.00% 0.16% 0.11% N
skip 2.52% 0.62% 1.23% W
trapl 0.00% 1.56% 1.06% B
load . 0.00% 1.12% 0.76% S
loade 721% 0.28% 251% g
'.d et "'f
total 12.08% 6.00% 1.95% .
testPrintDefinition =] A
all insts 38.01% 61.99% 100% Nk
add 2.26% 1.37% 1.71% A
sub 0.08% 2.69% 1.70% R
skip 431% 0.02% 1.65% -
wrapl 0.00% 3.68% 2.28% R
load 0.00% 2.56% - 1.59% Ty
loade 7.97% 0.11% 3.10% -;‘{}&_‘_
o
total 14.65% _ 10.44% 12.04% s
testPrintHierarchy .
all insts 26.25% 73.75% 100% RPS
add 2.10% 0.26% 0.73% o
sub 0.23% 0.84% 0.68% A
skip 251% 0.05% 0.70% RO
trapl 0.00% 2.17% 1.60% e
load 0.00% 1.45% 1.07% Nt
loadc 7.62% 0.19% 2.14% L
e N
total 12.46% 4.98% 6.94% DN
Average of macro-benchmarks BN
all insts 34.19% 65.81% 100% g
add 1.73% 0.94% 1.18% N
sub 0.31% 1.52% 1.08% N
and 0.02% 0.00% 0.01% e
sil 0.00% 0.20% 0.12% RN X
sra 0.00% 0.03% 0.02% e
skip 2.71% 0.57% 1.30% e
trapl 0.00% 2.29% 1.49% N
load 0.00% 1.39% 0.98% NN
loadc 7.47% 2.19% 2.68% NON
VALY
| total 12.23% 7.26% 8.87% S
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3
"
! D J.\ »
E "Table A.4: l"requency of integer tag traps, Part 1. | | ;;*, oy
% of insts that tag ra ; '.% 3
¢ ST sysem both ALY
. rest3plusd e
: instructions  65.14%  34.86% 100% PG
: o
D wal 000% _ 0.00% 0.00% | .
% . testAcnivationReturn i , e
. insouctions __ 97.21% 2.79%  100% | .
. total 0.00% 0.00% 0.00% | DR
2 testClassOrganizer : _ .';-:::-::
"\ insructions  41.06%  58.94% 100% - AR
h) skip 18.75% 0.00% 10.29% | £
' loadc 2539%  0.00%  24.90% | -
TR
g total 226% __ 0.00% 0.93% B
- testCompiler ; '-".:'-:;‘:
. insaructions  3342%  66.58%  100% | B
Y skip 12.04% 0.02% 6.34% | ndny
b loadc 1541% 1.38% 14.52% | oo
- B
X total 136% _ 0.00% 0.46% | o
2 testDecompiler g - .::-\. ¢
N insouctions  32.19% _ 67.81%  100% | , _ . S
i skip 4.99% 0.00% 328% | ' g
_ loadc 17.06% 0.16% 15.76% | o
3 | s
o total 1.35% 0.00% 0.44% N
t$ testPrintDefinirion ’ :j:*;‘
’ instructions  38.01% 61.99% 100% RN
" skip 22.33% 0.00% 221% - -
v loadc 1.03% 0.00% 1.01% | 3
¥ | ot
- total 0.08% 0.00% 0.03% .
~ >
h‘_ . z..« ” .}
: N
3 A
; DR
by BN
:! Py V)
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Table A.4: Frequency of integer tag traps, Part 2. i it
% of insts that g ra | PO

stem | o

testPrintHierarchy QT

instructions  26.25% 73.75% 100% Lo
skip 220% 0.00% 2.07% Sy
loade 447% 0.00% 4.17%

g AL

total 0.40% 0.00% 0.10%

avg of all macro-benchmar. i
instructions __ 34.19% __ 65.81% _ 100% |
skip 12.06% 0.00% 8.84%
loadc 12.67% 0.31% 12.07%

*
o
n.-. )
-

L] ‘.t
VAT

0
"
44 N

B

LaN Y,

total 1.09% 0% 0.39% e

[ AR RARAN B
DO A
-.",‘.'. .'c'b'l by
AN
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" Table A.S: Writearound for ﬁged instructions, Part 1. :za,_,-
add & sub .
%ora,b,t; (omit for immediate) S35 !
%skip It &, 1<<3] ::, :
i jump emror oLy :
%add/%sub a, b, ¢ S :(
%Kxorabd,t AW
%andt, | <<31,t
! Sskipoe t, 0; (are signs equal?)
| jmpok: (00! is OK)
| %xorac,t >
Kandt 1 << 3.t PN
%skip oq t, 0 (overflow?) L
> r;nd & or & xor “nd
. %or a,b, t; (ni only) L
2 Kskip ka2, 1<< 31 O
jump error ::_'.":'-.
%and/ %o Soror .
-~ sll NSS
‘. WL
- ®skipItu a2, 1<< 3] s
% | - jup e o
" %l 2. b, 0SS
i %xorab,t 2ats ;
| %andtl<<3lt : . )
%skipeqt, 0; (overflow?) “ ::. :::
Jozmp eeroe o
sl e
%skip I a, 1 << 31 ot
Jjump error o
%4 %l 3,b R
A (o N Y
2 sra RN,
v Kskipitn a, 1 << :\iwp L
'; jump ezror ‘:':; \E
%sraa. b InTal
) ! ®skipha l<<30
- {  %orb,1<<c30,b R
_-‘-:1':
SASAN
9 '\;‘\
Ny
e
T
v
e e
: -:_\" !
Y
~EaTY
o
1 o
< R
2 A
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% o
%a e -.
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N *_Table AS: Writearound for tagged instructions, Part 2. i 32"' ¢
o { skip & trap MR s;:
®ora, b, t; (omit for immediate) L
4‘.: ﬁ'lhp hu a, 1<<3] ;::
O Rall a, ta; {for 31-bit signed comparison only) Il '
- %all b, th; (for 31-bit signed comparison only) Al d
b %akip/ Ktrap cond w, th R
- Joad imm & loadc e
L7~ %akiplu 2.1 << 31 ‘:.:{-
%N jump error o
N Kload / Kloade (a)b, ¢ : SR
s load reg__ | e
’ Sxora. b, S
" %skip geu t, ] << 31 ey
7 ) Jump error o
::::: %load (a)b, ¢ ‘.\:
o R
) [ Table A.6: Cost summary by instruction, T
< op static dynamic 71y
o - (words) (cycles) o
i add 7-10 5-10% e
< sub 7-10 5-10* Tk

~ and 23 33 Eng
or 23 23

. - -.'_.«. .
e xor 2-3 2-3
.‘ -‘ ‘-
N sll 6 6
:‘l 8’1 2 2 ‘,—b'.‘:-q'

. )
v sra 4 4 POty

e skip 35 35 el
\)n U'lp 3"5 3'5 'o“::\

e load 2-3 2-3 oA

? -
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A o
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o * The wide variation is caused by the overfiow check. which 1s fasier for operands with opposite signs. A
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Table A.7: Time cost of omitting tagged integer instructions, Part 1.

1 ' ST system both

| test3plusd

i all cycles 5951% 40.43% 100%

. add 150.06%-300.12% 0.00% 89.40%-178.80%
trapl 0.00% 13.26%-22.11% 5.36%-8.94%
loadc 6.06% 0.10% 3.65%-3.65%

, total 150.06%-330.12% 13.36%-22.21% 94.76%-187.74%

! Performance relative to full SOAR (<100% is slower) 51%-35%

' testActivationReturn

- all cycles 9591% 4.09% 100%

- sub 35.30%-70.65% 0.00% 33.87%-67.75%

! skip 21.19%-35.31% 0.00% 20.32%-33.87%

! loadc 14.13% 0.00% 13.55%

i total 70.62%-120.08% 0.00% 67.74%-115.17%

| Performance relative to full SOAR (<100% is slower) 60%-46%

‘ testC las@anizer
all cycles 42.56% 57.44% 100%
add 3.99%-7.98% 4.27%-8.54% 4.15%-8.30%

| sub 1.13%-2.26% 6.19%-12.38% 4.04%-8.08%

1 sll 0.00% 2.59% 1.49%

i skip 4.61%-7.68% 2.80%-4.67% 3.57%-5.95%
trapl 0.00% 5.40%-8.98% 3.10%-5.16%
load 0.00% 1.98%-2.98% 1.14%-1.71%
loadc 9.80% 0.14% 4.25%-4.25%
total 19.54%-27.72%  23.38%-40.20% 21.74%-34.95%
Performance relative to full SOAR (<100% is slower) 82%-74%

testCompiler

: all cycles 34.07% 65.93% 100%
add 4.18%-8.35% 3.05%-6.11% 3.44%-6.87%
sub 1.52%-3.05% 4.06%-8.12% 3.20%-6.39%
and 0.03%-0.03% 0.00%-0.00% 0.01%-0.01%

- sl 0.00% 1.17% 0.77%
sra 0.00% 0.02% 0.01%
skip 3.90%-6.49% 1.82%-3.02% 2.52%-4.20%
trapl 0.00% 3.22%-5.37% 2.12%-3.54%
load 0.00% 1.41%-2.12% 0.93%-1.40%
loade 9.77% 0.35% 3.56%-3.56%

. total 19.35%-27.65% 15.10%-26.28% 16.55%-26.74%
Performance relatve to full SOAR (<100% is slower) 86%-79%

- .t
..........

&

A
el

2
':’v:.-‘

>

‘
2

S
"

) AR
., 0 RN

.
»

LSRN

[ A A AN

CAHLS
PO

S IR ATANNS]
Ut R e
o e




AN

QORI SR SO R S A Al Sl Sl G Al A It Sl Ak b il Al Al falie i S DAt it Y R A Rt e ph e A gt e i R F
.

"~ LR
: o
s RO
N [ Table A.7: Time cost of omitting tagged integer instructions, Part 2, ‘:.'

K ST _ system both A=

. testDecompiler 3
a all cycles 32.38% 67.62% 100% ‘QE
. add 6.29%-12.58% 3.42%-6.85% 4.35%-8.70% N
> sub 1.55%-3.09% 4.00%-8.00% 3.20%-6.41% X

X and 0.09%-0.15% 0.00% 0.03%-0.05% P

] sll 0.00% 0.40% 027% .
Ny sra 0.00% 0.43% 0.29% T
s skip 5.13%-8.52% 1.29%-2.13% 2.53%-4.21% S
N trapl 0.00% 3.22%-5.37% 2.18%-3.63%
i load 0.00% 1.54%-2.29% 1.04%-1.55% o3
= loadc 9.82% "0.40% 3.44%-3.44% ’

A
e total 22.86%-34.16%  14.68%-25.88%  17.34%-28.56% o

~ Performance relative to full SOAR (<100% is slower) 85%-78% e
-;.::; testPrintDefinition :'-.- :

e e
Y, all cycles 38.09% 61.91% 100% D
o add 8.30%-16.61% 501%-10.02%  6.26%-12.53% i
n sub 0.25%-0.50% 9.89%-19.78%  6.22%-12.44% X
. skip 9.45%-15.78% 0.03%-0.05% 3.62%-6.04% e
0 rapl 0.00% 8.09%-13.49% 5.01%-8.35% ok

o load 0.00% 3.78%-5.65% 2.34%-3.50% DI
- loadc 11.66% 0.16% 4.55%-4.55% LB

o ol - 20.69%-44.55%  26.95%-49.16%  27.99%-47.40% RS
'«';.‘,,' { Performance relative to full SOAR (<100% is slower) 78%-68% S

< restPrintHierarchy AN

o all cycles 25.90% 74.10% 100% Do

" add 7.42%-14.85% 0.89%-1.78% 2.58%-5.16% -
N sub 0.82%-1.65% 2.95%-5.89% 2.40%-4.79% Lo
g and 0.04% 0.00% 0.01% 7ot
N sli 0.00% 0.03% . 0.02% P

o skip 5.37%-8.96% 0.12%-0.20% 1.48%-2.47% OO

] trapl 0.00% 4.56%-7.60% 3.38%-5.63% _;i
- load 0.00% 2.04%-3.06% 1.51%-2.27% o
- loadc 10.89% 0.27% 3.02%-3.02% s
3 total 24.52%-36.34%  10.84%-18.81%  14.38%-23.36% oy
A Performance relative to full SOAR (<100% is slower) 87%-81% _\"‘-3
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[ Table A.7: Time cost of omitting tagged integer instructions, Part 3. "«j,:';‘f:
ST system both ?,.) 7t
average of macro-benchmarks Aﬂ;
all cycles 34.60% 65.40% 100% g ;o
add 6.04%-12.07% 3.33%-6.65% 4.15%-831% N AT
sub 1.05%-2.11% 5.42%-10.84% 3.81%-7.62% Fi5p
and 0.03%-0.04% 0.00% 0.01%-0.02% B, ~Eal
st 0.00% 0.84% 0.51% 0SS
sna 0.00% 0.09% 0.06% » i
skip 5.69%-9.49% 121%-2.01% 2.74%-4.57% %G /\.:l
wapl 0% . 49%-8.16% 3.16%-5.26% A
load 0.00% 2.15%-3.22% 1.39%-2.09% oo :0:
loade 10.39% 0.26% 3.76% ey
DI
total 23.19%-34.09%  18.19%-32.08%  19.61%-32.21% b .
Performance relative to full SOAR (<100% is slower) 84%-76% :;'.;:'.’::Z_-;:
\':-\.: ::"::
Of course, eliminating tag checking hardware from SOAR would also incur a space -I'_:.:';_'.:‘.:‘,‘
cost for the extra checking instructions. Table A.8 combines the smtic cost data with the E‘ "'r"_;“‘
SN,
static frequency data to compute the code expansion resulting from omitting data tag check- ;;';Z:
r. .r- L ; N
ing hardware in SOAR. Again, we can ignore the system code because it is so small. The IR
P }r_ o
P _ -4

data show that 38% more instructions would be needed — about 15% of the total image.

<, Sa
o

7

Table A.8: Static Cost of Omitting Tagged Arith Insts in System. g0

(3502 instruction words) , NN

(493 da words) NS

(3995 total words ip sys) i‘ e

(168,581 SOAR words of compiled code & literals) DN

(4,600 Smalltalk subroutines) AN

| (430,000 SOAR words total image) NS
op immediate?  cost _%code _ %code + data -':Z-::'.-',::::
add yes 7462  4.42% 1.74% ATV
add no ' 11320  6.72% 2.64% | -
sub yes . 4606 2.73% 1.07% Py
sub no 8680 S5.15% 2.02% Nt
and yes , 120 0.07% 0.03% NG
and no | 39  023% 0.09% OO
or yes . 4 0.00% 0.00% .2;,.
or no 66 0.04% 0.02% R
skip yes 0 0% 0% vis iy
skip no | 13340 791% 3.10% N
loadc _yes | 18508 _ 10.98% 4.30% e
Foml —. 64502 38.06%  15.00% N
fial ‘
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5 5
% 5
v By moving the tag check into hardware we have increased the cost for a tag exception. ;._;1-1
N SOAR must take a trap to handle one. The data show that only 0.39% of tagged instructions u"ﬁ
‘ "
A trap, and that only 12.5% of the instructions are tagged. Thus, a tag trap occurs once for ‘??.
2 "‘;
) X
'd every 2000 instructions. Since the tag wap bandler prologue is about 25 instructions long, s };ﬁ
3\‘ - ! , /
b this represent a time cost of about 1.25%. y_ﬁ
~ Q)
- To summarize, SOAR without hardware suppon for integer tag checking and with the ;:‘.:ET.
3 f\\ .-. N
5 same code generation strategy would run 24% siower and require about 150 KB more Z: ':~
’ memory. 5t
. o
3 o
N ol
f": A2.2. Evaluating the Impact of Adding a Compare-and-Branch Instruction :2-'_,’.
4 * .
l_‘l,
o,

Ry

Instead of condition codes, SOAR uses conditional skip instructions. This simplifies

-
i~ N

ARy ¥
.._Lg 1.

handling comparisons of data that are not integers. The tag trap handler need not set condi-

| ) '«(: tion codes, but can merely retumn to the appropriate location. As a result, a conditional jump E“
' * in SOAR takes two cycles: one for the skip instruction and another for the jump. This is as ;’_«i
‘_z;: fast as it can be without an additional adder to compute jump addresses. If we had such a gj
o device how much faster could SOAR run? To bound the number of times a conditional 3»1
' jump instruction would be used we can count skips. We can find a more accurate figure by :-..-

a

LY 'o"\;l'\
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counting only those skips that skip over unconditional jumps. Table A.9 present these data.

. )
j:: The table shows that the most that could be hoped for is an 8% improvement. Counting only ;,S'A
7 those skips that follow jumps results in a time savings of 2.6%. The large disparity implies E:E
> W
h> o, that there are many places where the conditionally executed code is only a single instruction. \;;.S
3 ‘n YA
] L] ‘!
ol For a sutic analysis, we counted the number of conditional jump sequences produced :-"
o by the compiler (Table A.10). The table shows that little space would be saved. “%
o N
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“Table A.9: Uj

ST system

: testClassOrganizer

« instructions 41.06% 58.94% 100%

1 cycles 42.56% 57.44% 100%

. untagged skip’s per instruction 157% 12.39% 7.95%

- tagged skip's per instruction 2.27% 1.30% 1.70%

* total skip's per instruction 3.84% 13.69% 9.65%

" skip-jumps per instruction 1.06% 5.49% 3.67%
untagged skip's per cycle 1.06% 8.91% 5.57%
tagged skip's per cycle 1.53% 0.93% 1.19%

. total skip's per cycle 2.60% 9.84% 6.76%

: skip-jumps per cycle 0.85% 4.43% 2.95%

. testCompiler

| instructions 33.42% 66.58% 100%

© cycles 34.07% 65.93% 100%

" untagged skip's per insguction 1.50% 15.57% 10.87%

i tagged skip’s per instruction 1.93% 0.88% 1.23%
total skip’s per instruction 3.44% 16.44% 12.10%

 skip-jumps per instruction 1.37% 5.78% 4.30%

- untagged skip's per cycle 1.01% 10.74% 7.42%

 tagged skip’s per cycle 1.30% 0.60% 0.84%

: total skip’s per cycle 2.30% 11.34% 8.26%

Mm cycle __0.92% 3.98% 2.94;7;=

- testDecompiler

" instructions 32.19% 67.81% 100% i
cycles 32.38% 67.62% 100% |

. untagged skip’s per instruction 0.72% 17.56% 1214%
tagged skip's per instruction 251% 0.62% 1.23%

* total skip’s per instruction 3.23% 18.18% 13.37%
skip-jumps per instruction 1.29% 4.63% 3.56% |

untagged skip’s per cycle 0.49% 12.07% 8.32% .

tagged skip's per cycle 1.71% 0.43% 0.84% !

toal skip’s per cycle 2.20% 12.50% 9.16%

skip-jumps per cycle 0.88% 3.18% 2.44%
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1
. ; instroctions 38.01% 61.99% 100%
Vo | cycles 38.09% 61.91% 100%
P [ untagged skip’s per instruction 138% 9.26% 6.26%
é., "1 tagged skip’s per instruction 4.32% 0.01% 1.65%
D | total skip’s per instruction 5.69% 9.27% 791%
5 | skip-jumps per instruction 145% 3.81% 2.91%
si i untagged skip's per cycle 1.01% 6.79% 458% |
s . tagged skip's per cycle 3.15% 0.01% 1.21% |
N\ i total skip's per cycle 4.16% 6.80% 5.79%
e .
e le 1.06% 2.79% 2.13% | o
’ testPrintHierarchy [ =i
A ” instructions 26.25% 73.75% 100% | ReN
2 _cycles 25.90% 74.10% 100% p-\.-i
W, " untagged skip's per instruction 120% 14.73% 1.18% | E__;;
, tagged skip’s per instruction 251% 0.06% 0.70% . o
e  total skip's per instruction IN% 14.78% 11.88% | N
Y ! ! e dd
§ ! skip-jumps per instruction 1.67% 3.90% 3.32% ::‘{‘;j
B "untagged skip's per cycle 0.86% 10.33% 7.87% R0
- : - i agged skip's per cycle 1.79% 0.04% . 0.49% A
~ | toaal skip’s per cycle 2.65% 10.37% 8.37% i,
N Y
P | skip | cle 1.19% 2.74% 2.34% | | Ry
g; | average of macro-benchmarks j 10 ,
N | instructions 34.19% 65.81% 100.00% 0
s | cycles 34.60% 65.40% 100.00% - h‘,!'
. . untagged skip's per instruction 1.27% 13.90% 9.68% 7
. | tagged skip’s per instruction 2N% 0.57% 1.30% | A
o . total skip's per instruction 3.98% 14.47% 1098% RO
Vo ' . ()
~ skip-jumps per instruction 137% 472% 3.55% | 3
c . untagged skip's per cycle 0.89% 9.77% 6.75% ﬂ
o tagged skip's per cycle 1.90% 0.40% 091% n\_
N total skip's per cycle 2.78% 10.17% 7.67% o
N ' o
. ;‘3 skip-jumps per cycle 0.98% 3.42% 2.56% gl\‘
-
: Table A.10: Space savings for compare-and-branch. DAY
0%y conditional jumps 4 ‘;.;:;:
W image size 1,500 Kb R
2, space savings for compare-and-branch 1.26% « "
. 2 2 f:.';
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A2.J3. Evaluating Two-Tone Instructions }‘,‘..Q
¢ \"..‘..;
. NS
3 t SOAR has two modes of execution: tagged and untagged. Rather than putting a mode " 7
N bit in the PSW and spending a cycle to switch modes when needed, we put a8 mode bit in f};"
’ »
ol
> each instruction. Table A.11 shows how much slower SOAR would run if it took extra time N M
. [ ah
é < o switch modes. The table shows that SOAR would be 16% slower without two-tone sy
1 -';::"‘v-
) RN
e To compute the code expansion, we insqumented the compiler. Table A.12 analyzes ::E'_:;
< these data. The table shows that the image would be 19% larger without two-tone instruc- Lo
h}‘-{?
> tions. :'::E.
» :j-}' S
s gy
N _ - ‘Q‘:ﬁ\
= { Table A.11: Pro time cost of manipulating PSW mode bit. | cs
Y ST system both S
1 testClassOrganizer 2 \
) ¥ !
h cycles 42.56% $57.44% 100% 3
W) | cost of mode-setting instructions _ 17.86% __ 19.30% __ 18.69% | LR
- testCompiler R
. cycles 3407% 6593% 100% NS
X cost of mode-setting instructions  18.52% 12.68% 14.67% A58 s
. ! testDecompiler | k:t-,. 1
o Tcycles 32.38% 67.62% 100% %:
W | cost of mode-setting insouctions  19.87% 11.92%  14.50% P
, testPrintDefinition e
e
N cycles - 38.09% 6191% 100% eiad
e | cost of mode-setting instructions _20.53% _ 20.35% _ 20.42% o8
2 ; testPrintHierarchy X
: | cycles 2590% 74.10% 100% Kooy
i cost of mode-setﬁn_g_ insructions  21.74% 9.93% 12.99% e
N : average of macro-benchmarks ]
2 . cycles 34.60% 65.40% 100.00% -:-\-;:-;:
re cost of mode-setting instructions  19.70%  14.84% 16.25% :::\'::*_
A ﬁ oty
| Table A.12: Space cost of mode bit in PSW. | E?
- number of extra instructions to change PSW mode bit 70759 RN
- i size 1.500 kB PR
ba relative cost of PSW mode bit 18.87% < '3‘:
Y )
{ Ry
N S
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A.2.4. How Important Are Tagged Immediates?

SOAR’s tagged immediate format crams tagged values such as nil, true, and false into
a twelve-bit immediate field. Without this feawre, a two-cycle load insguction would be
needed to get a tagged value. Table A.13 analyzes the performance impact of this feature.
For each benchmark, it gives the breakdown of cycles spent in Smalltalk vs. system code,
then proceeds to give the percentage of immediates used requiring the tagged format, and
finally, the time cost of omitting this feature. These data suggest that SOAR would be 10%
slower without this feature.

To analyze the impact of tagged immediates on the size of the compiled image, we
instrumented our compiler (Table A.14). As expected, non-negative integers dominate
immediate values. Pointer immediates are also frequent. Interestingly, boolean masks (all
zeroes with a one in one of the top four bits, or tag values) provide a use for tagged immedi-

ates more often than pointers.

The next sweep is to count the number of immediates that would be unrepresentable
without tagged immediates and determine the amount of further expansion in the image
(Table A.15). Tagged immediates don’t save much space; the image would only be 1.2%
larger without them.

AJ3. Interpretation

This section concerns features of SOAR 's instruction set and trap system.

AJ3.1. Evaluating SOAR’s Byte Facilities

We perform two comparisons: the speedup possible with load/store byte instructions,
and the slowdown had we not provided the insert and extract instryctions. Table A.16 gives
the important instruction sequences: LoadByte and storeByte are slightly faster than extract

and insert, which in turn are much faster than relying on one bit shifts.
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[ Table A.13: Dynamic usage and cost of tagged immediate values. | A0S
K (All figures in percentages.) L
ST _ system both ;fq ()
y testActivationR erurn &\:
: _ cycles 95.91% 409%  100% Q-’:'{ ?
. tagged imms/all imms 9.09% 14.35% 9.29% o
. ed imm cost/all cycles 7.06% 10.57% 71.21% D,
) rciﬁrgam’zer
- cycles 256%  57.44%  100% i'
ke tagged imms/all imms 1496%  14.83% 14.86% |
’ tagged imm cosvall cycles 6.59% 11.35% 9.32%
N testC ompiler !
. cycles 34.07% 65.93% 100%
sb
S tagged imms/all imms 15.08% 15.89% 15.69%
Y tagged imm cosvall cycles 7.20% 11.94% 10.33%
N testDecompiler
™ cycles 32.38% 67.62% 100%
LS
P tagged imms/all imms 12.74% 16.717% 15.85% |
p ed imm cosvall cycles 6.12% 13.01% 10.78% |
" ‘ testPrintDefinition B
' cycles 3809%  61.91%  100%
3 tagged imms/all imms 12.63% 10.29% 10.88% | .
N tagged imm cosvall cycles 5.90% 8.75% 7.66%
_ testPrintHierarchy
LY cycles 25.90% 74.10% 100%
. !
4 tagged imms/all imms 11.33% 15.30% 1461% :
3 ed imm cosvall cycles 5.29% 11.74% 10.07% .
» average of macro-benchmarks h
¢ cycles 34.60% 65.40% 100.00% A
: I ':::'#\ )
. tagged imms/all imms 13.35% 14.62% 14.38% :f_-:-“t .
. tagged imm cosvall cycles 6.22% 11.36% 9.63% | :_..:f.\
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\\ ) non-negative integers 35106 yes yes e
B negative 31-bit integers 7968 yes yes* w1
e : boolean masks 2984 yes no T
,:::5 pointers 2433 yes no %
* invalidt pointers 8507 no no y
o invalidt integers 868 no yes* AW
ot | toral SOAR image size 1500 kB ; BN
Bt 54
Table A.15: Impact of eliminati R
' cost for pointers 5417 immediates —
2N savings for integers 868 immediates e
% net cost 4549 immediates S
) reladve cost 121% s
°3 e
) Bl e— :":!
Table A.16: Codes sequences for byte operations, Part 1. 5 A
Fo ! (Byte O is least significant byte, 3 is most significant. P
oy 5 Loading a byte from memory e
{S‘ load byte instruction (addition to SOAR) o
N4 i loadByte (base)offset + byweNo, dest A
aL time 2 cycles
N : extract byte instruction (current SOAR)
E * load (base)offset, dest
‘s extract dest, byteNo, dest
N time 3 cycles
’ no special instructions (simplification 1o SOAR)
b load (base)offset, dest
n e . sl dest, dest (0 to 24 of these)
¢ . load pcRel(mask), maskReg (omit for byte 3)
ke . and dest, maskReg, dest (omit for byte 3)
o . mask: Oxff
A}
- ' byte 0 time $ cycles
b byte 1 time 13 cycles
Wi : byte 2 time 2] cycles .
- byte 3 time 26 cycles o
Xi _avg. time 16 cycles =
Yot e
) 2
29 R
,4 * In order 10 be comervative, we assume that the negative immedistes could be represented without tagged immediates < S
Wy either changing the opcode to subtract ins\ead of add or, for offsets. by using the full 32-bit representation. We further as- LA
- sums that the misgers which are 100 big for our current scheme would fit i four more bits. X
""; + These values do not fis in SOAR's tagged imumediate format.
.‘
hy
\ o
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Table A.16: Codes sequences for byte operations, Part 2.
Byte 0 is least significant bytwe, byte 3 is most significant.
toring a byte in memory
store byte instruction (addition 10 SOAR)
storeByte source, (base)offset + byweNo
time 2cycles
insert byte instruction (current SOAR)

load (base)offset, dest

load (base)offset, rl

load pcRel(mask), maskReg

and rl, maskReg, r}

insert source. byteNo, r2

or rl, r2. rl

store rl, (base)offset

time 9 cycles

no special instructions (simplification of SOAR)

load (base)offset, rl

load pcRel(mask), maskReg

and rl, maskReg, rl
! sil source. source
3 xor maskReg, -1, maskReg (omit for byte 3)
' and source. maskReg, source (omit for byte 3)

or rl, source, rl

store rl, (base)offset

byte Otime 10 cycles

byte l ime 18 cycles

byte 2cime 26 cycles

byte 3time 32 cycles

avg. time 22 cycles

Next. in Table A.17 we gather frequency data'on insert and extract instructions, and
multiply by the various costs to evaluate the performance impact of these other two schemes.
As shown in the last section of Table A.17, the average time savings for adding load/store
byte inszuctions would be 7%, while the average time penaity for taking away the byte
inservextract instructions would be 33%. Byte insert/extract instructions seem to be a good

compromise between functionality and efficiency.
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t ___Table A.17: Dynamic analysis of byte operations, Part1. | Qﬁ:
' testClassOrganizer a3
| steps 41.06% S8.94% 100% 3¢
. cycles 4256% $144% 100% R
| insert per inst 0 0.97% 0.57% e
| exaact per inst 0 354% 2.09%
! insert + extract per inst 0 451% 2.66%
r insert per cycle 0 0.70% 0.40%
| extract per cycle 0 254% 1.46%
| insert + extract per cycle 0 3.24% 1.86%
' store byte savings 0 487% 2.80%
i load byte savings 0 254% 1.46%
+ losd & store byte savings 0 741% 4.26%
| mi insert omission cost 0 0.70%  0.40% =4
. min exract omission cost 0 5.09% 2.92% e
. min inservextract omissioncost 0 5.78% 3.32% Ny
\'.‘\-.*
. avg insert omission cost 0 904%  5.19% % 3
- Vg extract omission cost 0 33.07% 18.99% :
| avg inservextract omission cost 0 42.11% 24.19% G
: Rty
 max insert omission cost 0 1600%  9.19% oW
| max extract omission cost 0 58.50%  33.60% N0
| max insert/extract omission cost 0 74.50%  42.79% NN
: testCompiler T 8
| steps 33.42% 66.58% 100% %
| cycles 34.07%  6593%  100% e
 insert per inst 0 0.75% 0.50% 2%
' exract per inst 0 2.62% 1.75% 4-__,»
 insert + extract per inst 0 3.37% 2.24% o
; insert per cycle 0 0.52% 0.34% N
| extract per cycle 0 1.81% 1.19% R
| insert + extract per cycle 0 2.32% 1.53% B
. store byte savings 0 3.61% 2.38% e
* load byte savings 0 1.81% 1.19% e
load & store byte savings 0 541% 3.57% '
min insert omission cost 0 0.52% 0.34% S
min extract omission cost 0 3.62% 2.38% NN
min inservexwact omission cost 0 4.13% 2.72% :‘_:_-:
e
. avg insert omission cost o 6.70% 441% il
avg extract omission cost 0 23.51% 15.50% e
avg inservextract omission cost 0 30.20% 1991% e
max insert omission cost 0 11.85% 7.81% f-ti
max extract omission cost 0 41.59%  27.42% '{\" y
max inservextract omission cost 0 5343%  35.23% R
Y
Iy
h'
e
,\}‘.
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| Table A.17: Dynamic analysis of byte operations, Part 2.
v testDecompiler

steps 32.19% 67.81% 100%
cycles 32.38% 67.62% 100%
insert per inst 0 1.12% 0.76%
extract per inst 0 2.717% 1.88%
insert + extract per inst 0 3.89% 2.64% '
insert per cycle 0 0.77% 052% :
extract per cycle 0 1.91% 129%
insert + extract per cycle 0 2.67% 1.81%
store byte savings 0 5.37% 3.63%
load byte savings 0 1.91% 1.29%
load & store byte savings 0 7.28% 4.92%
min insert omission cost 0 0.77% 052% '
min extract omission cost 0 3.81% 2.58% |
min insert/extract omission cost 0 4.58% 3.10% .
avg insert omission cost 0 9.97% 6.74%
avg extract omission cost 0 24.78% 16.76% .
avg insert/extract omission cost 0 34.75% 23.50%
max insert omission cost 0 17.65% 11.93%
max extract omission cost 0 43.84% 29.65%
max insert/extract omissioncost 0 61.49%  41.58%
testPrintDefinition K

steps 38.01% 61.99% 100%
cycles 38.09% 61.91% 100%
ingert per inst 0 2.23% 1.38%
extract per inst 0 6.03% 3.74% -
insert + extract per inst 0 8.26% 5.12% -
insert per cycle 0 1.63% 1.01% :
extract per cycle 0 4.42% 2.74%
insert + extract per cycle 0 6.06% 3.75%
store byte savings 0 11.44% 7.08%
load byte savings 0 4.42% 2.74%
load & store byte savings 0 15.86% 9.82%
min insert omission cost 0 1.63% 1.01%
min extract omission cost 0 8.85% 5.48%
min inserv/exuact omission cost 0 10.48% €.49%
avg insert omission cost 0 21.24% 13.15%
avg extract omission cost 0 57.51% 35.60%
avg inservextract omission cost 0 78.75% 48.75%
max insert omission cost 0 37.57% 23.26%
Mmax extract omission cost 0 101.75% 62.99%
max inservextract omission cost 0 139.32% 86.25%
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Table A.17: Dynamic analysis of byte ognﬁons,?art 3. '53" :
testPrinsHierarchy (E:f'
steps 26.25% 73.15% 100% Ny
insert per inst 0 284%  2.09% o
extract per inst 0 4.20% 3.10% o)
insert + extract per inst 0 7.04% 5.19% o
insert per cycle 0 1.99%  147% 24
extract per cycle 0 2.95% 2.18% ol
insert + extract per cycle 0 4.94% 3.66% R
store byte savings 0 13.93%  10.32% o
load byte savings 0 . 295%  2.18% . o
load & store byte savings 0 16.88% 1251% Py
min insert omission cost 0 1.99% 1.47% T
min extract omission cost 0 5.89% 437% R
min inservextract omission cost 0 7.88% 5.84% ony
S
avg insert omission cost 0 2587%  19.17% §; :
avg extract omission cost 0 38.30%  28.38% e
avg inservextract omission cost 0 64.17% 47.55% o
max insert omission cost 0 45.77%  33.92% 35
N max extract omission cost 0 67.76% 50.21% T
2 max inservextract omissioncost 0 113.54%  84.13% \‘;w,
< average of macro-benchmarks t_;fh
sweps 34.19%  65.81%  100.00% ..
cycles 34.60%  65.40%  100.00% N
insert per inst 0.00% 1.58% 1.06% | i
extract per inst 0.00%  3.83% 251% | N
insert + extract per inst 0.00% 541% 357% | NN
insert per cycle 0.00%  1.12%  0.75% N
extract per cycle 0.00% 2.73% 1.77% e
insert + extract per cycle 0.00% 3.85% 2.52% S
store byte savings 0.00% 7.84% 5.24% N
load byte savings 000%  2.73%  1.77% ! o
load & store byte savings 0.00% 10.57% 7.02% i )
min insert omission cost 0.00% 1.12% 0.75% oy
min extract omission cost 0.00% 5.45% 355% N
min inservextract omission cost  0.00% 6.57% 4.29% e
avg insert omission cost 0.00% 14.56%  9.73% . ;:S
avg extract omission cost 0.00%  3543%  23.05% | “ay
avg inservextract omission cost 0.00%  50.00%  32.78% ! Yk
~
max extract omission cost 0.00%  62.69%  40.77% | N
max insert omission cost 0.00% 25.77%  17.22% e
max inservexwact omission cost 0.00% 88.46% 58.00% ! « :j:
R
o,
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AJ3.2. Evaluation of the loadc instruction

Is loadc necessary? Loadc is a load instuction with a different opcode that is only
used to obtain the class (data type) of an object. If the object is an integer, the resulting trap
can be handied faster because the reason for the trap as well as the destination register are
fixed by convention. However, the trap handler for the ordinary load instruction could dis-
cover an attempt to access the class field by merely testing for an offset of zero. It would
take only two more cycles to test the offset value (in a shadow register) and branch. Table
A.18 contains an analysis of this performance impact based on the frequency of loadc traps.
The table shows that SOAR could functior quite well without loade. At worst, SOAR

would be only 1% slower without it.

AJ3.3. Barrel Shifter

Many VLSI processors have included a barrel shifter to perform multi-bit shifts in a
single cycle. SOAR lacks this feamre. Although undisputably important for BitBLT, we
thought that muldple-bit shifts would not be needed for Smalltalk-80 code per se. To
confirm this, we instumented our simulator to detect consecutive cascaded shift operations

and total the second through last This reflects the savings a barrel shifter would realize.

" Table A.19 has this data. These data show that a barrel shifter would not belp out SOAR.

AJ3.4. Evaluating the importance of Multiply and Divide

SOAR provides no help for multiplication or division. Is this a mistake? The only
place Smalltalk-80 uses these operations is runtime support routines for integers. We ran the
benchmarks and sampled the program counter to generate execution profiles. Table A.20
shows the results for the multiply and divide routines. The table shows that the average time
spent in these routines is 3.2%. Extra hardware for these operations would have had lintle

performance impact.
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! Table A.18: Loadc Time Analysis, Part 1.
(All numbers are in percents.)

A benchmark Smallalk  system both |
= testActivarionReturn
by steps 97.21% 2.79% 100%
3 cycles 9591%  4.09% 100%

- Joadc per inst 9.47% 0.01% 9.20%
N loadc per cycle 7.06% 0.01% 6.77%
- loadc traps per loadc 0% 0% 0%
b cost of omitting loadc 0% 0% 0%
o testClassOrganizer

7 steps 4106% 58.94% 100%

/ cycles 4256% 57.44% 100% o
o loadc per inst 724%  0.10%  3.03% X
A loadc per cycle 4.90% 0.07% 2.13% P

3 loadc traps per loadc 25.39% 0% 24.90% ey
v | cost of omitting loadc ___249% 0% 1.06% P
A ‘ testCompiler b
o steps 3342%  66.58% 100% ;5
o cycles 34.07%  65.93% 100% R
-5 loadc per inst 729%  0.25% 2.60% N
Nt - loadc per cycle 4.89% 0.17% 1.78% f:‘;:- ;
L loadc traps per loadc 15.41% 1.38%  14.52% RS
~ L cost of ominting Joadc 151% 0.00% 0.52% =
\ - testDecompiier s
o steps 3219% 67.81% 100% Z
N cycles 3238% 67.62% 100% o,
N loadc per inst 720%  0.29%  251% 7
e loadc per cycle 491% 0.20% 1.72% o
s loadc traps per ioadc 17.06% 0.16% 15.76% ~avd
oy : cost of omitting loadc 1.67% _ 0.00% 0.54% M
o testPrintDefinition P
=¥ steps 3801%  61.99% 100% S
o cycles 38.09% 6191% 100% oY
_ loadc per inst 798%  0.11%  3.10% e
¥ loadc per cycle 5.83% 0.08% 2.27% o
o loadc traps per loadc 1.03% 0% 1.01% e
::: | cost of omitting loadc 0.12% 0% 0.05% oy
' testPrintHierarchy M,
steps 26.25% 73.7%% 100% -
- cycles 2590% 74.10% 100% N
O loadc per inst 7.62% 0.19% 2.14% N
i loadc per cycle 544%  0.13% 1.51% wi
S loadc traps per loadc 4.47% 0% 4.17% O
24 costof omitting loadc ~ 049% 0% 0.13% « ;&
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Table A.18: Loadc Time Analysis, Part 2.

: (All numbers are in percents.)

" benchmark smallalk _system both

; average of macro-benchmarks

. steps 3419% 6581% 100.00%

! cycles 3460% 6540% 100.00%
loadc per inst 7.47% 0.19% 2.68%
loadc per cycle 5.19% 0.13% 1.88%

loadc traps per loadc 12.67%
cost of omiing loade 1.26%

031% 12.07%
0.00% 0.46%
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':{fi . Table A.19: Performance improvement of adding a barrel shifter. : _.‘::
:;:;: i ST system both [ 30
ot [ restClassOrganizer f L

, T cycles 4256% 57.44% 100% W

2 | savings on sll’s 0 0 0 -

\ i savings on sri’s 0 0.69% 040% |
K | savings on sra’s 0 0 0 b §
)k ] ; '5
A | ol savings 0 0.69% 0.40% -
~, 3 ; testCompiler i o
A0 . cycles 33.07% 65.93% 100% 7]

R * savings on sll's 0 0.00% 0.00% o
S i savings on stl's 0 0.26% 0.17% A
B . savings on sra’s 0 0.00% 0.00% -
N ' tomal savings 0 0.27% 0.18% Ei:f_
? e ‘ testDecompiler [ e
NN " cycles 32.38% 67.62% 100% s
f S )
5. ; savings on sil’s 0 0 0 ‘,; ‘
\ ; savings on sri’s 0 0.23% 0.15% .-
N ; savings on sra's 0 0 0 ! e
LAY ! ! ce
-, | | -._\
2 _ total savings 0 0.23% 0.15% R
F..{- testPrintDefinition i :ﬁ’.j-.'
ha cycles 38.09% 61.91% 100% | i
- ! savings on sll's 0 0 0 A
7 ! savings on sri's 0 0.95% 0.59% S
K<~ H . ) "}-I'\
N | savings on sra’s 0 0 0 Y
. i | Rt
Ly ) A
< | torl savings 0o 0.95% 0.59% ey
’ ; testPrintHierarchy ' 4
“ . cycles 25.90% 74.10% 100% AN
ot ~ savings on sll's 0 0 0 g
::E. : savings on srl’s 0 0.74% 0.55% o
Y savings on sra’s 0 0 0 ! ;j
. ! =
e total savings 0 0.74% 055% K
v average of macro-benchmarks ; .
N cycles 34.60% 65.40% 100.00% =
3 savings on sil's 0.00% 0.00% 0.00% Y,
P savings on sra's 0.00% 0.00% 0.00% | Al
savings on srl’s 0.00% 0.57% 037% e
. ; ;m
v ' )
: towl savings 0.00% 0.58% 037% 22
P . '1.‘f
g -
N < ;:;"
: o
5: ¢ 5; ‘
n ‘.'(l.“'.‘:
—
2 R
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[ Table A.20: Time spent in muitiply and divide routines.
benchmark multply divide total
testClassOrganizer 3.2% 52% 8.4%
testCompiler 1.7% 3.0% 4.7%
testDecompiler 0.9% 2.1% 3.0%
testPrintDefinition 0.0% 0.0% 0.0%
testPrintHierarchy 0.0% 0.0% 0.0%
average 1.2% 2.1% 3.2%

A3.S. Evaluating the In1/Outl Skip Condition

Table A.2] presents an analysis of the cost of omitting this condition from SOAR's
instuction set. We assume that the cost of simulating this operation is two cycles: one to

decrement each operand. This is an insignificant feature.

i ~ Table A21: Analysis of In1/Out1 condition.
? ST system both |
g testClassQOrganizer
! instructions 41.06% 58.94% 100% X
| cycles : 42.56%  57.44%  100% Siys
| inl/out! uses per inst 0% 0% 0% E,_.-'.r
cost of omitting inl/outi% 0% 0% 0% s
I restCompiler K :J-.J;
instructions B2%  66.58% 100% N,
i cycles 34.07% 65.93% 100% DASRA
! inl/outl uses per inst 0% 0.00% 0.00% ; K
| cost of omitting inl/outl% 0% 0.00% 0.00% RSN
. testDecompiler :::: ":‘\-
" instructions 32.19% 67.81% 100% e
| cycles 32.38% 67.62%  100% ORI
| inl/out] uses per inst 0% 0.04% 0.03% 2t
. cost of omitting inl/outl % 0% 0.03% 0.02% A
: testPrintDefinirion E:.C:_::;Qj
- instructions 38.01% 61.99% 100% \-‘.e:'\a’-\
' cycles 38.09% 61.91% 100% W
inl/outl uses per inst 0% 0% 0% oL
- cost of omitting inl/outl% 0% 0% 0% | & .
testPrintHierarchy \f},: :
 insguctions 2625% 73.75% 100% NN
. cycles 25.90% 74.10% 100% cered
 inl/out] uses per inst 0% 0.00% 0.00% g
_cost of omitting inl/outl% 0% 0.00% 0.00% Nl i
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AJ3.6. Evaluating SOAR's Conditional Trap Instruction

Conditional wrap instructions can save one cycle for a comparison whose outcome can
be predicted. Our SOAR software exploits the trap instruction to verify the in-line pro-
eedutécallache.uoch-eckd:engsofmmmvalues,mdm test the types of arguments to
primitive routines. Table A.22 shows the sequence that would be required without this
instruction. Table A.23 shows the rap instruction dynamic frequency, and the time cost for
omitting this feature from SOAR. Since the overhead is one cycle per wrap instruction, the
difference between the two numbers arises because the average insouction duraton is 1.5

cycles. The data show that SOAR would be 4% slower without this feature.

To analyze the impact of eliminating trap instructions on the size of the compiled
image, we instrumented our compiler to count trap instructions. Then assuming that each
such instruction would become two instructions ~— a skip followed by a call — we can cal-
culate the towal impact (Table A.24). Trap instructions improve image size even less than
execution speed, and our image would only be 2% larger without them. |

AJ.7. One-Cycle Traps

At one point in the design of SOAR, we decide'd to extend the trap operation rather
than lengthen the cycle time [Pen85b). This resulted in two-cycle traps instead of one<cycle
oaps. How many cycles did this decision cost us? Table A.25 presents our data. The result
of adding the extra cycle to the trap operation was to require fewer than one percent more

cycles. This was a good decision.

Table A22: Writearound for trap instruction. l
skip

call
Exwa Cost | cycle

-..‘1' '

"l e” «¥a ¥ " ‘a? 4% o LA i q." -_'q » ‘- -_'._-.‘ . -..1‘,-',.. - ‘.. - ..,".'.._.-' o
”‘. ~\~‘r-.4,s. \'. 4-. Yo ,\.s \ NN AR N

L




B2 170
ot
L8

*
2 Tabie A.23: Time cost of omitting the trap instruction.

R < (All numbers are percentages.)
N testActivationR erurn
_ instructions 9121%  2.79% 100%
Al ‘ cycles 9591% 4.09% 100%

N trap insuctions per insguctivn  14.20%  0.02%  13.80%
] [ cost w/o trap instruction 10.59%  0.01% 10.16% '

. testClassOrganizer

¢ insguctions 41.06% 58.94% 100%

A { cycles 4256% $7.44% 100%
trap instructions per instruction 9.53% 3.53% 5.99%

o cost w/o trap instruction 6.44%  2.54% 4.20% . oo

. instructions 33.42% 66.58% 100% o
% cycles 34.07% 6593% 100%

: trap instructions per instruction  9.38%  2.35% 4.70% wd
e cost w/o trap instruction 6.28% 1.62% 3.21% - o
?; testDecompiler :‘-_: o
Y instructions 3219% 6181% 100% Iat
cycles : g 3238% 67.62% 100% A
o wap instructions per instruction ~ 9.31%  2.51%  4.70% -

Mo cOSt /o trap instruction 6.35% 1.73% 3.22% .

) testPrintDefinirion -

P instructions 38.01% 61.9% 100% -
: cycles 38.09% 6191% 100% :

:':_',’ | trap instructions per instruction ~ 9.35%  5.64% 7.05%

7 costwiotrapinstucion ~ 6.83% 4.13% 3.16%

.fj testPrintHierarchy

» instructions 26.25% 73.75% 100%
& cycles 25.90% 74.10% 100% -
N .
> trap instructions per instrucion  9.07%  4.22% 5.49% ¥
B cost w/o rap instruction 6.48%  2.96% 3.87% e
N average of macro-benchmarks &f ‘
instructions 34.19% 65.81% 100.00% k-

r cycles 34.60% 6540% 100.00% B

o~ 2

3 trap instructions per instruction  9.33%  3.65%  5.59% )

% cost w/0 trap insgruction 6.48% 2.60% 3.93%

)
¥ :‘ ~
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Table A.24: Raw data for static analvsis of trap instructions.
total number of trap instructions 7638

total SOAR image size 1500 kB
relative size impact .04%

AL
REAgIAARO b)Y

ap,

)
":
']

<%

"
i

!

A

-
.y
X

- -y,
f\.‘_ Y,

)
AL AP

-

s e
A
A 4y

o
ra e

N3
i

%

'.:',:'-
“sS

Xy
b.,

PR A
5 &
‘. ~’~".

APy

P d

2

e T
b
Shh

e e e STy
NN ARSI, 05 A S Gh GO




Y

L ie® Fat Bat wab $a0 ¥ur Bal Bat Wat €4 Bab @os Bt 8o Q00 0 R AT RO RN RN R >4 9 -9, _gan Fai fad Bub fnt pov "R L ¢ v e b

¢ 172
i
N Table A2S: Trap frequencies, Part 1.
g !ﬁ system both
i} classOrganizer
y cycles 4256% S1.44% 100%
W TT's per cycle 153%  0.00%  0.65% . y
§ , WO's per cycle 0.53% 005%  023%
X WU's per cycle 0.43% 0.13% 0.18% ;
~f TI's per cycle 0.05%  000%  0.02% : )
] wal mapspercycle  2.54% _ 0.18%  1.08% ; \i'.:j
Y . compiler : e :.},',,?_\‘
. cycles 34.07% 65.93%  100% aoe:
" TT's per cycle 091%  0.00% 031% ‘.:x-ﬂ
WO's per cycle 056% 009%  0.19% . et
. WU's per cycle 051%  0.12% 0.17% ! A
P TI's per cycle 024% 001% 0.08% ! i
A GS's per cycle 0.00% 0.02% 0.00% . RO
N i A%
3 wual m cle 226 024% _ 0.76% %
B decompiler : E
L cycles 32.38% _ 67.62% _ 100% g
% TT's per cycie 0.92% 000%  030% Bt
W WO's per cycle 0.34% 008%  0.11% R
‘. WU’s per cycle 037%  0.07% 0.12% m
-] TI's per cycle 0.34% 000%  0.11% £
2 RN
X total ura cle  1.98%  0.15% _ 0.64% R
W ' printDefinition X '-§;.-j
% [ cycles 38.09% _ 6191%  100% )
TT's per cycle 0.76%  0.00% 0.29% oI
» WO's per cycle 0.04%  0.02% 0.01% o -
‘. WU’s per cycle 0.05% 002%  0.02% g
< TI's per cycle 0.04%  0.00% 0.02% et
& GS’s per cycle 0.01%  0.00% 0.00% t_{:i‘:
: Sl
, total waps percycle _0.90% __ 0.03% 0.34% §’~;_
b printHierarchy . e
Ly cycles 2590% 74.10% 100% o
o TT s per cycle 0.28%  0.00% 0.07% R
-~ WO's per.cycle 0.38% 0.03% 0.10% R
WU'’s per cycie 027%  0.07% 0.07% Al
TI's per cycle 0.28% 0.00% 0.07% L |
‘ GS’s per cycle 0.08% 0.00% 0.02% NN
W, *.‘:\::‘-
. wtal maps percycle  1.29%  0.10% 0.33% ::‘::f.
:‘. [N
" ™
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& . Table A.25: Trap frequencies, Part 2. :
K. Lﬁ_ system both
o average of macro-benchmarks i
N les 0.00% 0.00% 100.00% '
o TT's per cycle 0.88% 0.00% 032%
4 _ WO's per cycle 0.37% 0.05% 0.13%
o ' WU's per cycle 033% 008%  0.11% |
B> TT's per cycle 0.19% 0.00% 0.06% |
" GS's percycle 002% 0.00% 0.00%
()
o
o : total raps percycle  1.79% 0.14% 0.63% '
3
et
' A38. Evalusting the Performance Impact of Shadow Registers
o To ascertain the time cost of omitting shadow registers from SOAR, we measured the
N
| :Q frequencies of the various types of traps, estimated the added cost of handling each type
N
ps without shadow registers, and multiplied the two together. One trap we could not measure
E?' was the page fault crap. Handling a page fault takes so long though, that the few cycles
o
- saved by shadow registers will not make much difference. The traps we did include were:
XN
~ integer tag traps (TT) on ALU and load/store instructions, register window overflows (WO)
N
5\" on call instructions, register window underflows (WU) on return instructions, traps cause by
O
'i;'.‘; conditional trap instructions (TT), and Generation Scavenge traps (GS) on store instructions.
-.‘
Of these, only tag and Generation Scavenge wrap handlers profit from the shadow registers.
; Table A.26 summarizes our results. These data seem to suggest that shadow registers do not
b ' significantly improve performance. The maximum improvement is 0.12%.
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Table A26: Time cost of omitting shadow registers.

ANAN

v

-
&
L
1)
1
LY
\
N

A

(All figures in percents.) ,
ST system T
testActivationReturn iy
cycles 9591%  4.09% /
shadow cost for GS 0% 0% LY
shadow cost for TT 0% 0% Lo
| shadow costforboth 0% 0% Pj\{::
‘ testClassOrganizer Eﬁt"\.
oycies 4356%  57.44% -*-'1?
‘ot
shadow cost for GS 0.00% 0% 0.00% -
shadow cost for TT 0.12% 0% 0.05% s
| shadow costforboth _ 0.12% 0% 0.05% E:;t_
=—__=ﬁompi ler 7ot
cycles 34.07% 6593% b
B
shadow cost for GS 0.00% 0.01% 0.00% ty
shadow costfor T~ 0.07% 0% 0.02% £
| shadow cost for both 0.07% 0.01% 0.03% ®
‘ testDecompiler A
cycles 3238% 67.62% :
shadow cost for GS 0% 0%

shadow cost for TT 0.04% 0% 0.01%
shadow cost for both 0.04% 0% 0.01%
testPrintDefinirion

cycles 38.09% 6191%

shadow cost for GS 0.00% 0% 0.00%
shadow cost for TT 0.30% 0% 0.12%
shadow cost for both 0.30% 0% 0.12%
testPrintHierarchy .
cycles 2590% 74.10% "

shadow cost for GS 0.02% 0%
shadow cost for TT 0.02% 0%
shadow cost for both 0.04% 0%

0.01%
0.00%
0.01%

s
e

R
.

»
eyl
2%

.
st

average of macro-benchmarks

b

by

cycles 34.60% 65.40%

shadow cost for GS 0.00% 0.00%
shadow cost for TT 0l11% 0.00%

shadow cost for both 0.11% 0.00%

100.00%

0.00%
0.04%
0.04%
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N
]
b A3.9. Does SOAR Really Need Vectored Traps?
|'!
' Suppose the reason for a trap appeared in the PSW register. Then, the instructions in
20 Table A.27 would simulate the effect of vectored traps. As the table shows, the cost would
(3
i be four more cycles per trap.
L,
. We can then estimate the overall performance impact by counting the number of traps
3
3 that occur (Table A.28). Since this would presumably allow us to shorten our traps by a
i
- .
. cycle, the table also lists the cost of the extra trap cycle in the current SOAR system. The
’ tble indicates that the new effect of non-vectored traps would be a 2.2% percent time
, penalty.
-,
5 A.4. Procedure Calls
T
o
j, Next we examine SOAR s features that help procedure calls.
)
A.4.1. Evaluating SOAR'’s Register File Organization
> Unlike other RISCs, the chips designed at Berkeley feature multiple overlapping
4
E on-chip register windows. These reduce the amount of saving and restoring for calls and
returns. If this feature were left out of SOAR, then each call would have to save the registers
¥
: it needed. and each return would have to restore the saved registers. To measure this
'.;: hypothetical cost, assuming no compiler optimization. we counted the number of non-nil
registers before each retumn instruction. This count of modified registers was then doubled to -
) N
vl account for both the saving and restoring cost. Finally, we added two cycles per reumn to e :
v et
; S
] Table A27: Simulating vectored traps. L
» %jump 2V
- %extract psw. 2, r_temp DAY
» .
; 3
, 4 cycles =] PR
3 e
N
-ﬁ :‘:{:¢
..‘ - o
03 RO
3 P'}.\
N R
4 e
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“Table A.28: Time cost of non-vectored traps, Part 1. o
Smalltalk  System both i
testActivationRerurn Py
instructions 9721%  279% 100% Y
time 9591%  4.09% 100% :*2;1-
.'4'\:
Traps per instruction 0.30%. 0.02% 0.29% ‘
cost of extra trap cycle/all cycles 0.22% 0.01% 0.21% "
cost of nonvectored traps/all cycles  0.89% 0.04% 0.85% ;
testClassOrganizer -
instructions 41.06%  58.94% 100% P
time 4256% 57.44% 100% el
traps per instruction 3.75% 0.25% 1.69% N
cost of extra trap cycle/all cycles 2.54% 0.18% 1.18% e
| cost of nonvectored traps/all cycles 10.14% 0.72% 4.73% N
( testCompiler :':.\,
instructions 3342% 66.58% 100% oo :
tme 34.07%  6593% 100% NS
A
traps per instruction 331%  035% 1.34% R
cost of extra trap cycle/all cycles 2.22% 0.24% 0.92% RS
cost of nonvectored traps/all cycles 8.88% 0.97% 3.66% ;ﬁ:‘
restDecompiler ..
instructions 3219% 67.81% 100% AT
time 3238% 67.62% 100% R
‘:\.‘:t‘
traps per instruction 2.90% 0.22% 1.08% ;Qq
cost of extra trap cycle/all cycles 198%  0.15%  0.74% T
cost of nonvectored u'ags/all czcles 7.90% 0.59% 2.96% sy
testPrintDefinition e
instructions 38.01% 61.99% 100% o
time 38.09% 6191% 100% '_:'\-j,':-
N
traps per instruction 1.23% 0.05% 0.50% ——
cost of extra trap cycle/all cycles 0.90% 0.03% 0.36% S
| cost of nonvectored traps/all cycles 3 60% 0.14% 1.46% NN
i testPrintHierarchy f.j-;:'_:j
insoructions 26.25%  73.75% 100% NN
time 2590%  74.10%  100% O
ta
traps per instruction 1.81%  0.15%  0.58% O
cost of extra trap cycle/all cycles 1.29% 0.10% 041% RS
cost of nonvectored traps/all cycles 5.16% 0.42% 1.65% ::.j:"_'{-.
.':’.':“
e
)
w2
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- ‘..
.,:I;E
L S
.
A
A AN N e e NN et ettt e .
A A G SV, WG A R S S S S AT PRI NIAINIINY RNP AP NN VR APAL A



h Y
o

¥ ;‘Vj
- 177 —
, - i
¥ 23
' \: Table A28: Time cost of non-vectored traps, Part 2. R
~ Smallalk  System both gy
average of macro-benchmarks 'A"'
v instructions 34.19%  65.81% 100.00% b
& time 34.60%  65.40%  100.00% he
-:\ :\-
O traps per instruction 260%  0.20% 1.04% e
Y cost of extra rap cycle/all cycles 1.79% 0.14% 0.72% K}
cost of nonvectored traps/allcycles =~ 7.14% 0.57% 2.89% ~
34 o
) .‘) ﬁ..
= account for the extra cycle of the loadm and storem instructions. Table A.29 presents these E:
o ’ ’
;; data. SOAR’s multiple register windows are the most significant architectural feature on the -
R chip: The benchmarks would take 70% more time without them. e
e
. 3
-I:; ’ How much would the image expand without register windows? The cost would be two :\:‘j
k ‘.l ) J
N instructions upon entering a subroutine (a subtract to adjust a stack pointer and a storem to b"
® -
'\‘2 save registers), and two instructions for each return from the routine (a loadm to restore the , .
~ :.-"
Zj registers and an add to restore the sp). Table A.30 gives our analysis. :.‘:j
3 : 2
r ) =
r A.4.2. Number of Registers per Window .
X :
With only eight registers, SOAR's windows are much smaller than RISC II's. Meas- ko
iy urements of Berkeley Smalltalk suggested that this would be sufficient. To verify this we >
Ca

_-'5: instrumented our system and ran some benchmarks. When more registers are needed for a A
0/ o
’,;.‘: subroutine, it allocates a spi/l area in main memory. Thus, we merely counted the number of =
. T

L) ' -
s spill objects allocated and divided by the total number of calls. Also, we measured how 7
: x
N many words were spilled to determine how many more registers were needed. Table A.31 }
'~ ’ Al
»" N

s presents these dawm. These data show that SOAR’s windows are large enough for 1

' -
L8

Smalltalk-80 programs; more than 97% of the subroutines called fit into a window. e

-
-1 A.43. Analysis of Loadm & Storem b
2 The first step in evaluating the impact of the load- and store- multiple instructions is to < f.('
;‘_:Z measure their frequency. Since the time to simulate ore of these instructions depends on the - "
. 4
% -

LY
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“Table A29: Analysis of register windows, Part 1. B
ST s both
testActivanionRerurn '
instructions 97.21% 2.79% 100%
cycles 9591% 4.09% 100%
retw's* / all insts 9.62% 0.06% 9.35%
retw’s® / cycles 7.17% 0.03% 6.88% i
| avg regs used / retw* 3.98 5.17 498 !
cost of saving & restoring regs/allcycles 71.52% 0.37%  82.38%
cost of WO/U 4%
net cost of no reg file 78.38%
.__perf vs full SOAR 56.02&
testClas Aam‘zer
instructions 41.06% 58.94% 100%
cycles 4256% 57.44% 100%
retw's® / all insts 9.78% 4.62% 6.74%
retw’s® / cycles 6.61% 332% 4.72% |
| avg regs used / retw* 3.53 5.00 512 |
cost of saving & restoring regs/allcycles 59.90% 39.85% 57.83% !
cost of WO/U 9.80%
net cost of no reg file 48.03%
_Eerf vs full SOAR - 67.55% '
testCompiler ‘ ;
instructions 33.42% 66.58% 100%
cycles 34.07% 65.93% 100%
retw's® / all insts 9.64%  3.82% 5.1% |
retw’s*® / cycles 6.46% 2.64% 3.94% |
| avg regs used / retw* 3.62 5.26 535
cost of saving & restoring regs/all cycles 59.75% 33.00%  49.99%
cost of WO/U 9.50% .
net cost of no reg file 40.49% '
perf vs full SOAR 71.18%
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4 %
X __Table A29: Analysis of register windows, Part 2. . Ny
) ST sys both h
: restDecompiler ' s 4:
o instructions 32.19% 61.81% 100% | Y.
N cycles 32.38% 67.62% 100% Y
Y- [ rerw’s* / all insts 876% 3.62%  521% i
AN retw's* / cycles 597% 249%  3.62% | Jo%
| avg regs used / retw* 3.78 5.42 5.54 | T
N cost of saving & restoring regall cycles  57.11% 31.93%  47.31% | e
AW cost of WO/U 6.40% | o
9% net cost of no reg file 40.91% ' N
= vs full SOAR 70.97% N
- testPrintDefinition | -
" insructions . 3801% 61.99% 100% | 7
i cycles 38.09% 61.91% 100% A
N retw's® / all insts 8.19% $52%  6.53% , e
NN retw's* / cycles 598% 4.04% 4.78% | oY
NN avg regs used / retw* 3.69 5.27 5.52 | ‘o
cost of saving & restoring regs/alicycles $6.17% 50.69%  62.35% | .
55 cost of WO/U 0.50% | o
cor net cost of no reg file 61.85% ' e
"3 “perf vs full SOAR - 61.79% | e
b, . 5 T — A,
v testPrintHierarchy i e
A , | inswructions 26.25% 73.75% 100% %
- cycles 25.90% 74.10% 100% | i3
N retw's* / all insts 8.68% 2.79% 4.33% | PN
T retw’s* / cycles 6.20% 1.95% 3.05% 0
e avg regs used / retw* 4.01 5.98 594 s
NN cost of saving & restoring regvall cycles 62.11% 27.27%  42.40% | P
g cost of WO/U 5.10% Cn
o net cost of no reg file 37.30% . i
Ea% [ perf vs full SOAR 72.83% oD
1KY EEEE— -
Pt average of macro-benchmarks N
122 inseructions 34.15% 6581% 100.00% R
cycles 34.60% 65.40% 100.00% -
retw’s*® / all insts 9.01% 4.07%  5.73% 25
'f:;;: retw’s* / cycles 6.24%  2.89% 4.02% : e
o avg regs used / retw* 3.73 5.39 5.49 R
e cost of saving & restoring regs/all cycles $9.01%  36.55%  51.98% e
o cost of WO/U 6.26% e
) net cost of no reg file 45.12% -
o rf vs full SOAR 68.86% =
¥ : '.'j\
o)
' VY :'::
. ¢ X
~3 * includes all return instructions that change regisier windows: refw, retiw, retnw, reunwk — tagged or uniagged. ‘{i
24 0
N o
. | “a ]
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2 Table A30: Static anaiysis of register windows. |
Y routine entry points 4654

uy routine exit points 6795

* image size 1500 kB
. relative cost 6.11%
| —Table A31: ?gill area analysis.
. testCompiler

. total number of cycles -~1,100,000
} ‘ total number of Smalltalk calls ~18,000
b number of calls using spill area 430
' total size of spill areas actually needed 883
[Y.
B avg. words of spill area used 2.1
v fraction of calls needing spill areas 2.3%
e, mean number of cycles ill allocation 2,600
» testDecompiler

- total number of cycles ~2,900,000
& total number of Smalltalk calls ~46,000
o pumber of calls using spill area 1085
a9 total size of spill areas actually needed 2807
2 avg. words of spill area used 26
3 fraction of calls needing spill areas 2.4%
pi mean number of cycles per spill allocation 2,700

. number of registers actually accessed, we also gathered those data (Table A.32). The loadm

P
2K A

and storem instructions rarely occur, only one in 130 insouctions.

Table A.33 shows the performance consequences of eliminated this seldom-used

Fard

feature. As expected from the frequency data, these instructions have minimal impact.

) .' l.

SOAR would be only 3% slower without them.

How much larger would the compiled image grow if we eliminated Joadm and storem?

4 l’ aa

-
Fals

Originally, these instructions were intended only for the system code. In that case there
would be no significant static impact. However, our current strategy for spill areas requires
a routine that allocates a spill area to initialize it. We therefore instrumented our compiler to
count the number of words initialized this way (Table A.34). (We also subtracted out the

number of rem instructions used solely to write nil into several registers prior to the storem.)

‘_2',

Omitting these instructions would increase the size of the system by only 2%.
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| o
[ Table A32: Loadm/storem execution frequencies, Part 1. | o
ST SYS both | -
testAcrivationReturn :
instructions 97.21% 2.79% 100% ‘
loadms per insguction _ 0.00% _ S.19%  0.14% 2y
loadms w/ 8 regs 0.00% 100.00% 100.00% y
mean losdm regs 0 8 8
storems per insguction 0.00% 5.19% 0.14% hey
storems w/ 8 regs 0.00% 100.00%  100.00% -
| mean storem regs 0 8 8 | 'f%
| testClassOrganizer :jc,.._\_
instructions 41.06% $8.94% 100% &
loadms per instruction 0.00% 0.62% 0.36% | -
loadms w/ 8 regs 0.00% 100.00% 100.00% | KN
mean loadm regs 0 8 8 | -
storems per insquction  0.74%  0.65%  0.69% . N
storems w/ S regs 0.00% 0.13% 0.07% e
storems w/ 6 regs 0.00% 0.00% 0.00% 5
storems w/ 7 regs 100.00% 5.06% 46.89% ;
storems w/ 8 regs 0.00% 94.81% 53.04% |
Inean storem regs 7 7.95 753 |
testCompiler {
instuctions . 33.42% 66.58% 100%
loadms per instruction 0.00% 0.67% 0.45%
loadms w/ 7 regs 0.00% 17.70% 17.70%
Joadms w/ 8 regs 0.00% 82.30% 82.30%
mean loadm regs 0 7.82 7.82
storems per instuction 0.75% 0.65% 0.69%
storems w/ 4 regs 0.05% 0.00% 0.02% |
storems w/ 5 regs 0.85% 0.12% 0.39% |
storems w/ 6 regs 2.2% 0.00% 1.00%
storems w/ 7 regs 96.38% 15.54% 45.21% .
storems w/ 8 regs 000%  8433%  53.38% |
mean storem regs 6.95 7.84 752 -
\
4
N
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Table A32: Loadm/storem execution frequencies, Part 2. |
ST SYS both |
| — — — ]
. testDecompiler f
instructions 32.19% 67.81% 100% |
loadms per instruction 0.00% 0.35% 0.24% |
loadms w/ 8 regs 0.00% 100.00% 100.00%
mean loadm regs 0 8 8
. storems per instruction 0.73% 051% 0.58% »
storems w/ 4 regs 0.62% 0.00% 0.25% .
storems w/ S regs 0.00% 0.00% 0.00% RN
storems w/ 6 regs 0.62% 0.00% 0.25% | Sy
storems w/ 7 regs 98.76%  31.02%  S8.35% ; el
storems w/ 8 regs 0.00% 6898%  41.15% | RS
{ mean storem regs 6.98 7.69 740 et
testPrintDefinition i ] TE
instructions 3801% __ 61.99% 100% | PR
loadms per instruction 0.00% 0.06% 0.04% - RO
loadms w/ 8 regs 0.00% 100.00%  100.00% | RN
mean loadm regs 0 8.00 800 ' S50t
storems per instruction 0.00% 0.14% 0.09% ; p, .
storems w/ S regs 0.00%  2.13%  2.13% | YA
storems w/ 6 regs 0.00% 0.00% 0.00% ' e
storems w/ 7 regs 0.00%  $5.32%  55.32% ! e
storems w/ 8 regs 0.00%  4255%  4255% | ADATEN
mean storem regs -0 7.38 738 ! £
testPrintHierarchy i !,,?.;_ :
instructions 26.25%  73.75% 100% i
loadms per insmuction  0.00%  027%  0.20% ' Lo
loadms w/ 7 regs 000% 1437% 14.37% AT
loadms wi/ 8 regs 0.00%  85.63%  85.63% . AR
mean loadm regs 0 7.86 7.86
storems per insruction  0.24%  0.43%  0.38% L\T\
storems w/ S regs 0.00% 4.53% 3.79% DA A
storems w/ 6 regs 0.00% 0.00% 0.00% ' "{:-;-;.5‘;'
storems w/ 7 regs 100.00% 4151%  51.10% ! e
storems w/ 8 regs 000%  5396%  45.11% ! SO
mean storem regs 7 7.45 738 | AT




"Table A.32: Loadm/storem execution frequencies, Part 3.
ST SYS both
avg of macros

instructions 34.19% 65.81% 100%
loadms per instruction 0% 0.39% 0.26%
loadms w/ 7 regs 0% 6.41% 641%
loadms w/ 8 regs 0% 93.59% 93.59% -
mean loadm regs 0 7.94 794
storems per instruction 0.49% 0.48% 0.49%
storems w/ 4 regs 0.13% 0% 0.05%
storems w/ 5 regs 0.17% 1.38% 1.28%
storems w/ 6 regs 0.67% 0% 0.25%
storems w/ 7 regs 7903%  29.69% 51.37%
storems w/ 8 regs 0% 68.93% 47.05%
mean storem regs 559 7.66 7.44
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" Table A33: Time cost of omitting loadm & storem.

(All costs in percenss.)
benchmark ST SYS both
testActivationRerurn
cycles 9591% 4.09% 100%
loadm cost/all cycles 0% 18.23% 0.75%
storem cost/all cycles 0% 18.23% 0.75%
total cost 0% 36.47% 1.49%
— —————— SRE
testC las:OLganizer
cycles 4256% $5744% 100%
loadm cost 0% 3.11% 1.79%
storem cost 2.99% 3.26% 3.14%
total cost 2.99% 6.37% 4.93%
restCompiler
cycles 34.07% 6593% 100%
loadm cost 0% 3.15% 2.08%
storem cost 3.01% 3.08% 3.06%
total cost 3.01% 6.24% .‘»414&
testDecompiler
cycles 3238% 67.62% 100%
loadm cost 0% 1.M% 1.15%
storem cost 2.98% 2.37% 2.57%
total cost 2.98% 4.07% 3.72%
— ——
testPrintDefinition
cycles 38.09% 6191% 100%
loadm cost 0% 0.30% 0.19%
storem cost 0% 0.65% 0.40%
total cost 0% 0.96% 0.59%_
testPrintHierarchy
cycles 2590% 74.10% 100%
loadm cost 0% 1.31% 0.97%
storem cost 1.02% 1.96% 1.72%
total cost 1.02% 3.28% 2.69%
—_—
macro LVL
cycles 3460% 6540% 100%
loadm cost 0% 1.92% 1.24%
storem cost 2% 2.26% 2.18%
total cost 2% 4.18% 341%

count

I Table A.34: Raw data for static analvsis of store multigleﬂ
descnpton

cost for storem

7363 words

total SOAR image size 1500 kB
I relative statc cost 1.96% l
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A.4.4. Performance of Inline Caching

First, we measured the cost of SOAR's in-line cache. In other words, if no procedure
lookups were needed, how much faster could SOAR run? To evaluate SOAR's in-line
cache, 'we counted the occurrences of the cache probe conditional ap instruction. That gave
us the number of probes. Then, since the prologue takes five cycles, we can easily get the
probe time. For the misses, we added two components: the miss trap handler time, obtained
by multiplying the number of misses (trap instruction traps) by the trap handler path length,
and the lookup time, obtained directly from an execution profile. Table A.35 summarizes
these data, which show that in-line caching takes a lot of time; 23% of SOAR’s time is spent
testing the cache and handling misses. Without any caching at all, the probe time would
decrease to zero, but the miss time would increase by a factor of 1/3.53%=28. In other words,
what takes 100 seconds with in-line caching would ke 100-10.88+12.46x28=438 seconds.

SOAR would be four times slower with no cache at all.

Next, we compared the 23% cost for the in-line cache with other caching schemes.
One of these was the hash table cache found in interpretive Smalltalk-80 systems. The other
scheme was an in-line indirect cache. Each call would jump through a per-process area with
each process’s cache entries. Table A.36 shows the code sequences needed for these two
types of cache. The hash table cache is the most expensive scheme, requiring 23 cycles for a
cache probe. SOAR's in-line cache requires a prologue of only 5§ cycles. The indirect
scheme adds a cycle for the indirect call and one for an indirect load in the prologue for a
total of 7.

Assuming that the cache miss cost is independent of the caching scheme. we can use
the cache probe frequency data to calculate the costs of these caching schemes (Table A.37).
The bottom line in the table gives the average speed of the various schemes. SOAR would
run only 75% as fast as it does now with a.convenu‘onal hash table cache. ln other words,

the work that requires 100 cycles would take 133 with a conventional cache.
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. Table A3S: Inline cache performance evaluation, Part 1:.

description - ST system |  both
testActivarionReturn

instructions i 97.21% 2.79% 100%
cycles F 95.91% 4.09% 100%
probes per inst i 9.47% 0.01% 9.20%
probes per cycle £ 7.06% 0.01% 6.77%
loadc traps per probe 1 0% 0% 0%
misses per probe P 0% 0% 0%
probe insts per inst i 28.40% 0.03% 27.61%
loadc trapH insts per inst t 0% 0-0% 0-0%
probe & wapH insts perinst  ; 28.40% 0.03-0.03% | 27.61-27.61%
probé cycles per cycle j 35.32% 0.03% 33.87%
loadc trapH cycles per cycle 0% 0-0% 0-0%
miss trapH cycles per cycle 0% 0% 0%
probe & trapH cycles percycle || 35.32%  0.03-0.03% | 33.87-33.87%
total miss time 0%

total cache time
P—

testClassOrganizer

33.87-33.87%

instructions i| 41.06% 58.94% 100%

cycles l 42.56% 57.44% 100%

probes per inst i 1.24% 0.05% 3.00%
probes per cycle i 4.90% 0.04% 2.10%
loadc traps per probe - i 25.39% 0-0% 25.15-25.15%
misses per probe i 0.96% 0% 0.95%
probe insts per inst 1 21.73% 0.15% 9.01%
loadc trapH irists per inst . 552% 0-0% 2.27-2.27%
probe & trapH insts perinst | 27.24%  0.15-0.15% | 11.27-11.27%
probe cycles per cycle - 24.48% 0.18% 10.52%
loadc trapH cycles percycle © 8.70% 0-0% 3.70-3.70%
miss trapH cycles per cycle - 0.14% 0% 0.06%
probe & trapH cycles percycle | 33.18%  0.18-0.18% | 14.22-14.22%
total miss time 2.66%

total cache time

16.88-16.88%
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Table A35: Inline cache performance evaluation, Part 2.
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| description i ST system | both |
testCompiler
instructions i 33.42% 66.58% 100%
cycles i 34.07% 65.93% 100%
probes per inst T 7.29% 0.18% 255%
probes per cycle i 4.89% 0.12% 1.75%
loadc traps per probe 1 15.41% 0-1.94% | 14.70-14.79%
misses per probe ' 4.81% 0% 4.59%%
probe insts per inst 1 21.87% 0.53% 7.66%
loadc trapH insts per inst T337% 0-0.01% 1.13-1.13%
probe & trapH insts per inst . 25.24%  0.53-0.54% 8.79-8.80%
probe cycles per cycle n 24.43% 061% 8.73%
loadc trapH cycles per cycle 5.27% 0-0.02% 1.80-1.81%
miss trapH cycles per cycle 0.71% 0% 0.24%
probe & trapH cycles percycle | 29.70% 0.61-0.63% | 10.52-10.53%
total miss time 15.14%
total cache time 25.66-25.67% |
sestDecompiler |

instructions 32.19% 67.81% 100%
cycles 32.38% 67.62% 100%
probes per inst o 7.20% 0.24% 2.48%
probes per cycle P 4.91% 0.16% 1.70%
loadc traps per probe i 17.06% 0-0.19% | 15.95-15.96%
misses per probe 1 7.00% 0% 6.54%
probe insts per inst i 21.59% 0.72% 7.44%
loadc trapH insts per inst i 3.68% 0-0.00% 1.19-1.19%
probe & tapl] insts perinst | 25.28%  0.72-0.72% 8.62-8.62%
probe cycles per cycle . 24.53% 0.82% 8.50%
loade trapH cyclespercycle - 5.86% 0-0.00% 1.90-1.90%
miss trapH cyclespercycle ¢ 1.03% 0% 0.33%
probe & trapH cycles percycle : 30.39%  0.82-0.82% | 10.40-10.40%
total miss time . 24.03%
total cache time 34.43-34.43%
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) " Table A3S: Inline cache performance evaluation, Part 3.
! description ST system | both
i _ testPrintDefinirion
instructions . 38.01% 61.99% 100%
' cycles i 38.09% 6191% 100%
! probes per inst i 7.98% 0.04% 3.06%
! probes per cycle | 5.83% 0.03% 2.24%
' loadc traps per probe i 1.03% 0-0% 1.02-1.02%
l ‘ misses per probe [ 0.73% 0% 0.72%
: probe insts per inst i 23.95% 0.12% 9.18%
\ loadc trapH insts per inst 1 025% . 0-0% 0.09-0.09%
\ obe & trapH insts perinst ' 24.20%  0.12-0.12% 9.27-9.27%
P probe cycles per cycle i 29.17% 0.15% 1121%
’ loadc trapH cycles percycle | 0.42% 0-0% 0.16-0.16%
| miss trapH cycles percycle | 0.13% 0% 0.05%
. probe & trapH cycles percycle || 29.59%  0.15-0.15% | 11.37-11.37%
: total miss time | 1.95%
' total cache time : 13.31-13.31%
¢ testPrintHierarchy
) instructions i 2625% 73.75% 100%
g cycles - 25.90% 74.10% 100%
. probes per inst 7.62% 0.16% 2.12%
. probes per cycle 5.44% 0.11% 1.49%
‘ loadc traps per probe 4.47% 0-0% 4.22-4.22%
‘ misses per probe 5.13% 0% 4.84%
i probe insts per inst T 22.86% 0.48% 6.36%
: loadc trapH insts per inst 1.02% 0-0% 0.27-0.27%
x probe & wapH insts perinst ' 23.88% 0.48-0.48% 6.62-6.62%
probe cycles per cycle 27.20% 0.56% 7.46%
- loadc trapH cycles per cycie 1.70% 0-0% 0.44-0.44%
!